1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
Require Import NaryFunctions.
Require Import Wf_nat.
Require Export ZArith.
Require Export DoubleType.
(** * 31-bit integers *)
(** This file contains basic definitions of a 31-bit integer
arithmetic. In fact it is more general than that. The only reason
for this use of 31 is the underlying mecanism for hardware-efficient
computations by A. Spiwack. Apart from this, a switch to, say,
63-bit integers is now just a matter of replacing every occurences
of 31 by 63. This is actually made possible by the use of
dependently-typed n-ary constructions for the inductive type
[int31], its constructor [I31] and any pattern matching on it.
If you modify this file, please preserve this genericity. *)
Definition size := 31%nat.
(** Digits *)
Inductive digits : Type := D0 | D1.
(** The type of 31-bit integers *)
(** The type [int31] has a unique constructor [I31] that expects
31 arguments of type [digits]. *)
Definition digits31 t := Eval compute in nfun digits size t.
Inductive int31 : Type := I31 : digits31 int31.
(* spiwack: Registration of the type of integers, so that the matchs in
the functions below perform dynamic decompilation (otherwise some segfault
occur when they are applied to one non-closed term and one closed term). *)
Register digits as int31 bits in "coq_int31" by True.
Register int31 as int31 type in "coq_int31" by True.
Delimit Scope int31_scope with int31.
Bind Scope int31_scope with int31.
Local Open Scope int31_scope.
(** * Constants *)
(** Zero is [I31 D0 ... D0] *)
Definition On : int31 := Eval compute in napply_cst _ _ D0 size I31.
(** One is [I31 D0 ... D0 D1] *)
Definition In : int31 := Eval compute in (napply_cst _ _ D0 (size-1) I31) D1.
(** The biggest integer is [I31 D1 ... D1], corresponding to [(2^size)-1] *)
Definition Tn : int31 := Eval compute in napply_cst _ _ D1 size I31.
(** Two is [I31 D0 ... D0 D1 D0] *)
Definition Twon : int31 := Eval compute in (napply_cst _ _ D0 (size-2) I31) D1 D0.
(** * Bits manipulation *)
(** [sneakr b x] shifts [x] to the right by one bit.
Rightmost digit is lost while leftmost digit becomes [b].
Pseudo-code is
[ match x with (I31 d0 ... dN) => I31 b d0 ... d(N-1) end ]
*)
Definition sneakr : digits -> int31 -> int31 := Eval compute in
fun b => int31_rect _ (napply_except_last _ _ (size-1) (I31 b)).
(** [sneakl b x] shifts [x] to the left by one bit.
Leftmost digit is lost while rightmost digit becomes [b].
Pseudo-code is
[ match x with (I31 d0 ... dN) => I31 d1 ... dN b end ]
*)
Definition sneakl : digits -> int31 -> int31 := Eval compute in
fun b => int31_rect _ (fun _ => napply_then_last _ _ b (size-1) I31).
(** [shiftl], [shiftr], [twice] and [twice_plus_one] are direct
consequences of [sneakl] and [sneakr]. *)
Definition shiftl := sneakl D0.
Definition shiftr := sneakr D0.
Definition twice := sneakl D0.
Definition twice_plus_one := sneakl D1.
(** [firstl x] returns the leftmost digit of number [x].
Pseudo-code is [ match x with (I31 d0 ... dN) => d0 end ] *)
Definition firstl : int31 -> digits := Eval compute in
int31_rect _ (fun d => napply_discard _ _ d (size-1)).
(** [firstr x] returns the rightmost digit of number [x].
Pseudo-code is [ match x with (I31 d0 ... dN) => dN end ] *)
Definition firstr : int31 -> digits := Eval compute in
int31_rect _ (napply_discard _ _ (fun d=>d) (size-1)).
(** [iszero x] is true iff [x = I31 D0 ... D0]. Pseudo-code is
[ match x with (I31 D0 ... D0) => true | _ => false end ] *)
Definition iszero : int31 -> bool := Eval compute in
let f d b := match d with D0 => b | D1 => false end
in int31_rect _ (nfold_bis _ _ f true size).
(* NB: DO NOT transform the above match in a nicer (if then else).
It seems to work, but later "unfold iszero" takes forever. *)
(** [base] is [2^31], obtained via iterations of [Z.double].
It can also be seen as the smallest b > 0 s.t. phi_inv b = 0
(see below) *)
Definition base := Eval compute in
iter_nat size Z Z.double 1%Z.
(** * Recursors *)
Fixpoint recl_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
(i:int31) : A :=
match n with
| O => case0
| S next =>
if iszero i then
case0
else
let si := shiftl i in
caserec (firstl i) si (recl_aux next A case0 caserec si)
end.
Fixpoint recr_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
(i:int31) : A :=
match n with
| O => case0
| S next =>
if iszero i then
case0
else
let si := shiftr i in
caserec (firstr i) si (recr_aux next A case0 caserec si)
end.
Definition recl := recl_aux size.
Definition recr := recr_aux size.
(** * Conversions *)
(** From int31 to Z, we simply iterates [Z.double] or [Z.succ_double]. *)
Definition phi : int31 -> Z :=
recr Z (0%Z)
(fun b _ => match b with D0 => Z.double | D1 => Z.succ_double end).
(** From positive to int31. An abstract definition could be :
[ phi_inv (2n) = 2*(phi_inv n) /\
phi_inv 2n+1 = 2*(phi_inv n) + 1 ] *)
Fixpoint phi_inv_positive p :=
match p with
| xI q => twice_plus_one (phi_inv_positive q)
| xO q => twice (phi_inv_positive q)
| xH => In
end.
(** The negative part : 2-complement *)
Fixpoint complement_negative p :=
match p with
| xI q => twice (complement_negative q)
| xO q => twice_plus_one (complement_negative q)
| xH => twice Tn
end.
(** A simple incrementation function *)
Definition incr : int31 -> int31 :=
recr int31 In
(fun b si rec => match b with
| D0 => sneakl D1 si
| D1 => sneakl D0 rec end).
(** We can now define the conversion from Z to int31. *)
Definition phi_inv : Z -> int31 := fun n =>
match n with
| Z0 => On
| Zpos p => phi_inv_positive p
| Zneg p => incr (complement_negative p)
end.
(** [phi_inv2] is similar to [phi_inv] but returns a double word
[zn2z int31] *)
Definition phi_inv2 n :=
match n with
| Z0 => W0
| _ => WW (phi_inv (n/base)%Z) (phi_inv n)
end.
(** [phi2] is similar to [phi] but takes a double word (two args) *)
Definition phi2 nh nl :=
((phi nh)*base+(phi nl))%Z.
(** * Addition *)
(** Addition modulo [2^31] *)
Definition add31 (n m : int31) := phi_inv ((phi n)+(phi m)).
Notation "n + m" := (add31 n m) : int31_scope.
(** Addition with carry (the result is thus exact) *)
(* spiwack : when executed in non-compiled*)
(* mode, (phi n)+(phi m) is computed twice*)
(* it may be considered to optimize it *)
Definition add31c (n m : int31) :=
let npm := n+m in
match (phi npm ?= (phi n)+(phi m))%Z with
| Eq => C0 npm
| _ => C1 npm
end.
Notation "n '+c' m" := (add31c n m) (at level 50, no associativity) : int31_scope.
(** Addition plus one with carry (the result is thus exact) *)
Definition add31carryc (n m : int31) :=
let npmpone_exact := ((phi n)+(phi m)+1)%Z in
let npmpone := phi_inv npmpone_exact in
match (phi npmpone ?= npmpone_exact)%Z with
| Eq => C0 npmpone
| _ => C1 npmpone
end.
(** * Substraction *)
(** Subtraction modulo [2^31] *)
Definition sub31 (n m : int31) := phi_inv ((phi n)-(phi m)).
Notation "n - m" := (sub31 n m) : int31_scope.
(** Subtraction with carry (thus exact) *)
Definition sub31c (n m : int31) :=
let nmm := n-m in
match (phi nmm ?= (phi n)-(phi m))%Z with
| Eq => C0 nmm
| _ => C1 nmm
end.
Notation "n '-c' m" := (sub31c n m) (at level 50, no associativity) : int31_scope.
(** subtraction minus one with carry (thus exact) *)
Definition sub31carryc (n m : int31) :=
let nmmmone_exact := ((phi n)-(phi m)-1)%Z in
let nmmmone := phi_inv nmmmone_exact in
match (phi nmmmone ?= nmmmone_exact)%Z with
| Eq => C0 nmmmone
| _ => C1 nmmmone
end.
(** Opposite *)
Definition opp31 x := On - x.
Notation "- x" := (opp31 x) : int31_scope.
(** Multiplication *)
(** multiplication modulo [2^31] *)
Definition mul31 (n m : int31) := phi_inv ((phi n)*(phi m)).
Notation "n * m" := (mul31 n m) : int31_scope.
(** multiplication with double word result (thus exact) *)
Definition mul31c (n m : int31) := phi_inv2 ((phi n)*(phi m)).
Notation "n '*c' m" := (mul31c n m) (at level 40, no associativity) : int31_scope.
(** * Division *)
(** Division of a double size word modulo [2^31] *)
Definition div3121 (nh nl m : int31) :=
let (q,r) := Z.div_eucl (phi2 nh nl) (phi m) in
(phi_inv q, phi_inv r).
(** Division modulo [2^31] *)
Definition div31 (n m : int31) :=
let (q,r) := Z.div_eucl (phi n) (phi m) in
(phi_inv q, phi_inv r).
Notation "n / m" := (div31 n m) : int31_scope.
(** * Unsigned comparison *)
Definition compare31 (n m : int31) := ((phi n)?=(phi m))%Z.
Notation "n ?= m" := (compare31 n m) (at level 70, no associativity) : int31_scope.
Definition eqb31 (n m : int31) :=
match n ?= m with Eq => true | _ => false end.
(** Computing the [i]-th iterate of a function:
[iter_int31 i A f = f^i] *)
Definition iter_int31 i A f :=
recr (A->A) (fun x => x)
(fun b si rec => match b with
| D0 => fun x => rec (rec x)
| D1 => fun x => f (rec (rec x))
end)
i.
(** Combining the [(31-p)] low bits of [i] above the [p] high bits of [j]:
[addmuldiv31 p i j = i*2^p+j/2^(31-p)] (modulo [2^31]) *)
Definition addmuldiv31 p i j :=
let (res, _ ) :=
iter_int31 p (int31*int31)
(fun ij => let (i,j) := ij in (sneakl (firstl j) i, shiftl j))
(i,j)
in
res.
(** Bitwise operations *)
Definition lor31 n m := phi_inv (Z.lor (phi n) (phi m)).
Definition land31 n m := phi_inv (Z.land (phi n) (phi m)).
Definition lxor31 n m := phi_inv (Z.lxor (phi n) (phi m)).
Register add31 as int31 plus in "coq_int31" by True.
Register add31c as int31 plusc in "coq_int31" by True.
Register add31carryc as int31 pluscarryc in "coq_int31" by True.
Register sub31 as int31 minus in "coq_int31" by True.
Register sub31c as int31 minusc in "coq_int31" by True.
Register sub31carryc as int31 minuscarryc in "coq_int31" by True.
Register mul31 as int31 times in "coq_int31" by True.
Register mul31c as int31 timesc in "coq_int31" by True.
Register div3121 as int31 div21 in "coq_int31" by True.
Register div31 as int31 diveucl in "coq_int31" by True.
Register compare31 as int31 compare in "coq_int31" by True.
Register addmuldiv31 as int31 addmuldiv in "coq_int31" by True.
Register lor31 as int31 lor in "coq_int31" by True.
Register land31 as int31 land in "coq_int31" by True.
Register lxor31 as int31 lxor in "coq_int31" by True.
Definition lnot31 n := lxor31 Tn n.
Definition ldiff31 n m := land31 n (lnot31 m).
Fixpoint euler (guard:nat) (i j:int31) {struct guard} :=
match guard with
| O => In
| S p => match j ?= On with
| Eq => i
| _ => euler p j (let (_, r ) := i/j in r)
end
end.
Definition gcd31 (i j:int31) := euler (2*size)%nat i j.
(** Square root functions using newton iteration
we use a very naive upper-bound on the iteration
2^31 instead of the usual 31.
**)
Definition sqrt31_step (rec: int31 -> int31 -> int31) (i j: int31) :=
Eval lazy delta [Twon] in
let (quo,_) := i/j in
match quo ?= j with
Lt => rec i (fst ((j + quo)/Twon))
| _ => j
end.
Fixpoint iter31_sqrt (n: nat) (rec: int31 -> int31 -> int31)
(i j: int31) {struct n} : int31 :=
sqrt31_step
(match n with
O => rec
| S n => (iter31_sqrt n (iter31_sqrt n rec))
end) i j.
Definition sqrt31 i :=
Eval lazy delta [On In Twon] in
match compare31 In i with
Gt => On
| Eq => In
| Lt => iter31_sqrt 31 (fun i j => j) i (fst (i/Twon))
end.
Definition v30 := Eval compute in (addmuldiv31 (phi_inv (Z.of_nat size - 1)) In On).
Definition sqrt312_step (rec: int31 -> int31 -> int31 -> int31)
(ih il j: int31) :=
Eval lazy delta [Twon v30] in
match ih ?= j with Eq => j | Gt => j | _ =>
let (quo,_) := div3121 ih il j in
match quo ?= j with
Lt => let m := match j +c quo with
C0 m1 => fst (m1/Twon)
| C1 m1 => fst (m1/Twon) + v30
end in rec ih il m
| _ => j
end end.
Fixpoint iter312_sqrt (n: nat)
(rec: int31 -> int31 -> int31 -> int31)
(ih il j: int31) {struct n} : int31 :=
sqrt312_step
(match n with
O => rec
| S n => (iter312_sqrt n (iter312_sqrt n rec))
end) ih il j.
Definition sqrt312 ih il :=
Eval lazy delta [On In] in
let s := iter312_sqrt 31 (fun ih il j => j) ih il Tn in
match s *c s with
W0 => (On, C0 On) (* impossible *)
| WW ih1 il1 =>
match il -c il1 with
C0 il2 =>
match ih ?= ih1 with
Gt => (s, C1 il2)
| _ => (s, C0 il2)
end
| C1 il2 =>
match (ih - In) ?= ih1 with (* we could parametrize ih - 1 *)
Gt => (s, C1 il2)
| _ => (s, C0 il2)
end
end
end.
Fixpoint p2i n p : (N*int31)%type :=
match n with
| O => (Npos p, On)
| S n => match p with
| xO p => let (r,i) := p2i n p in (r, Twon*i)
| xI p => let (r,i) := p2i n p in (r, Twon*i+In)
| xH => (N0, In)
end
end.
Definition positive_to_int31 (p:positive) := p2i size p.
(** Constant 31 converted into type int31.
It is used as default answer for numbers of zeros
in [head0] and [tail0] *)
Definition T31 : int31 := Eval compute in phi_inv (Z.of_nat size).
Definition head031 (i:int31) :=
recl _ (fun _ => T31)
(fun b si rec n => match b with
| D0 => rec (add31 n In)
| D1 => n
end)
i On.
Definition tail031 (i:int31) :=
recr _ (fun _ => T31)
(fun b si rec n => match b with
| D0 => rec (add31 n In)
| D1 => n
end)
i On.
Register head031 as int31 head0 in "coq_int31" by True.
Register tail031 as int31 tail0 in "coq_int31" by True.
|