1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
Set Implicit Arguments.
Require Import ZArith.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import DoubleBase.
Local Open Scope Z_scope.
Section DoubleAdd.
Variable w : Type.
Variable w_0 : w.
Variable w_1 : w.
Variable w_WW : w -> w -> zn2z w.
Variable w_W0 : w -> zn2z w.
Variable ww_1 : zn2z w.
Variable w_succ_c : w -> carry w.
Variable w_add_c : w -> w -> carry w.
Variable w_add_carry_c : w -> w -> carry w.
Variable w_succ : w -> w.
Variable w_add : w -> w -> w.
Variable w_add_carry : w -> w -> w.
Definition ww_succ_c x :=
match x with
| W0 => C0 ww_1
| WW xh xl =>
match w_succ_c xl with
| C0 l => C0 (WW xh l)
| C1 l =>
match w_succ_c xh with
| C0 h => C0 (WW h w_0)
| C1 h => C1 W0
end
end
end.
Definition ww_succ x :=
match x with
| W0 => ww_1
| WW xh xl =>
match w_succ_c xl with
| C0 l => WW xh l
| C1 l => w_W0 (w_succ xh)
end
end.
Definition ww_add_c x y :=
match x, y with
| W0, _ => C0 y
| _, W0 => C0 x
| WW xh xl, WW yh yl =>
match w_add_c xl yl with
| C0 l =>
match w_add_c xh yh with
| C0 h => C0 (WW h l)
| C1 h => C1 (w_WW h l)
end
| C1 l =>
match w_add_carry_c xh yh with
| C0 h => C0 (WW h l)
| C1 h => C1 (w_WW h l)
end
end
end.
Variable R : Type.
Variable f0 f1 : zn2z w -> R.
Definition ww_add_c_cont x y :=
match x, y with
| W0, _ => f0 y
| _, W0 => f0 x
| WW xh xl, WW yh yl =>
match w_add_c xl yl with
| C0 l =>
match w_add_c xh yh with
| C0 h => f0 (WW h l)
| C1 h => f1 (w_WW h l)
end
| C1 l =>
match w_add_carry_c xh yh with
| C0 h => f0 (WW h l)
| C1 h => f1 (w_WW h l)
end
end
end.
(* ww_add et ww_add_carry conserve la forme normale s'il n'y a pas
de debordement *)
Definition ww_add x y :=
match x, y with
| W0, _ => y
| _, W0 => x
| WW xh xl, WW yh yl =>
match w_add_c xl yl with
| C0 l => WW (w_add xh yh) l
| C1 l => WW (w_add_carry xh yh) l
end
end.
Definition ww_add_carry_c x y :=
match x, y with
| W0, W0 => C0 ww_1
| W0, WW yh yl => ww_succ_c (WW yh yl)
| WW xh xl, W0 => ww_succ_c (WW xh xl)
| WW xh xl, WW yh yl =>
match w_add_carry_c xl yl with
| C0 l =>
match w_add_c xh yh with
| C0 h => C0 (WW h l)
| C1 h => C1 (WW h l)
end
| C1 l =>
match w_add_carry_c xh yh with
| C0 h => C0 (WW h l)
| C1 h => C1 (w_WW h l)
end
end
end.
Definition ww_add_carry x y :=
match x, y with
| W0, W0 => ww_1
| W0, WW yh yl => ww_succ (WW yh yl)
| WW xh xl, W0 => ww_succ (WW xh xl)
| WW xh xl, WW yh yl =>
match w_add_carry_c xl yl with
| C0 l => WW (w_add xh yh) l
| C1 l => WW (w_add_carry xh yh) l
end
end.
(*Section DoubleProof.*)
Variable w_digits : positive.
Variable w_to_Z : w -> Z.
Notation wB := (base w_digits).
Notation wwB := (base (ww_digits w_digits)).
Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
Notation "[+| c |]" :=
(interp_carry 1 wB w_to_Z c) (at level 0, c at level 99).
Notation "[-| c |]" :=
(interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99).
Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
Notation "[+[ c ]]" :=
(interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c)
(at level 0, c at level 99).
Notation "[-[ c ]]" :=
(interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
(at level 0, c at level 99).
Variable spec_w_0 : [|w_0|] = 0.
Variable spec_w_1 : [|w_1|] = 1.
Variable spec_ww_1 : [[ww_1]] = 1.
Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
Variable spec_w_succ_c : forall x, [+|w_succ_c x|] = [|x|] + 1.
Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
Variable spec_w_add_carry_c :
forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1.
Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB.
Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB.
Variable spec_w_add_carry :
forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB.
Lemma spec_ww_succ_c : forall x, [+[ww_succ_c x]] = [[x]] + 1.
Proof.
destruct x as [ |xh xl];simpl. apply spec_ww_1.
generalize (spec_w_succ_c xl);destruct (w_succ_c xl) as [l|l];
intro H;unfold interp_carry in H. simpl;rewrite H;ring.
rewrite <- Z.add_assoc;rewrite <- H;rewrite Z.mul_1_l.
assert ([|l|] = 0). generalize (spec_to_Z xl)(spec_to_Z l);omega.
rewrite H0;generalize (spec_w_succ_c xh);destruct (w_succ_c xh) as [h|h];
intro H1;unfold interp_carry in H1.
simpl;rewrite H1;rewrite spec_w_0;ring.
unfold interp_carry;simpl ww_to_Z;rewrite wwB_wBwB.
assert ([|xh|] = wB - 1). generalize (spec_to_Z xh)(spec_to_Z h);omega.
rewrite H2;ring.
Qed.
Lemma spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]].
Proof.
destruct x as [ |xh xl];trivial.
destruct y as [ |yh yl]. rewrite Z.add_0_r;trivial.
simpl. replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]))
with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|])). 2:ring.
generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
intros H;unfold interp_carry in H;rewrite <- H.
generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
intros H1;unfold interp_carry in *;rewrite <- H1. trivial.
repeat rewrite Z.mul_1_l;rewrite spec_w_WW;rewrite wwB_wBwB; ring.
rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r.
generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
as [h|h]; intros H1;unfold interp_carry in *;rewrite <- H1.
simpl;ring.
repeat rewrite Z.mul_1_l;rewrite wwB_wBwB;rewrite spec_w_WW;ring.
Qed.
Section Cont.
Variable P : zn2z w -> zn2z w -> R -> Prop.
Variable x y : zn2z w.
Variable spec_f0 : forall r, [[r]] = [[x]] + [[y]] -> P x y (f0 r).
Variable spec_f1 : forall r, wwB + [[r]] = [[x]] + [[y]] -> P x y (f1 r).
Lemma spec_ww_add_c_cont : P x y (ww_add_c_cont x y).
Proof.
destruct x as [ |xh xl];trivial.
apply spec_f0;trivial.
destruct y as [ |yh yl].
apply spec_f0;rewrite Z.add_0_r;trivial.
simpl.
generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
intros H;unfold interp_carry in H.
generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
intros H1;unfold interp_carry in *.
apply spec_f0. simpl;rewrite H;rewrite H1;ring.
apply spec_f1. simpl;rewrite spec_w_WW;rewrite H.
rewrite Z.add_assoc;rewrite wwB_wBwB. rewrite Z.pow_2_r; rewrite <- Z.mul_add_distr_r.
rewrite Z.mul_1_l in H1;rewrite H1;ring.
generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
as [h|h]; intros H1;unfold interp_carry in *.
apply spec_f0;simpl;rewrite H1. rewrite Z.mul_add_distr_r.
rewrite <- Z.add_assoc;rewrite H;ring.
apply spec_f1. rewrite spec_w_WW;rewrite wwB_wBwB.
rewrite Z.add_assoc; rewrite Z.pow_2_r; rewrite <- Z.mul_add_distr_r.
rewrite Z.mul_1_l in H1;rewrite H1. rewrite Z.mul_add_distr_r.
rewrite <- Z.add_assoc;rewrite H; simpl; ring.
Qed.
End Cont.
Lemma spec_ww_add_carry_c :
forall x y, [+[ww_add_carry_c x y]] = [[x]] + [[y]] + 1.
Proof.
destruct x as [ |xh xl];intro y.
exact (spec_ww_succ_c y).
destruct y as [ |yh yl].
rewrite Z.add_0_r;exact (spec_ww_succ_c (WW xh xl)).
simpl; replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]) + 1)
with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|]+1)). 2:ring.
generalize (spec_w_add_carry_c xl yl);destruct (w_add_carry_c xl yl)
as [l|l];intros H;unfold interp_carry in H;rewrite <- H.
generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
intros H1;unfold interp_carry in H1;rewrite <- H1. trivial.
unfold interp_carry;repeat rewrite Z.mul_1_l;simpl;rewrite wwB_wBwB;ring.
rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r.
generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
as [h|h];intros H1;unfold interp_carry in H1;rewrite <- H1. trivial.
unfold interp_carry;rewrite spec_w_WW;
repeat rewrite Z.mul_1_l;simpl;rewrite wwB_wBwB;ring.
Qed.
Lemma spec_ww_succ : forall x, [[ww_succ x]] = ([[x]] + 1) mod wwB.
Proof.
destruct x as [ |xh xl];simpl.
rewrite spec_ww_1;rewrite Zmod_small;trivial.
split;[intro;discriminate|apply wwB_pos].
rewrite <- Z.add_assoc;generalize (spec_w_succ_c xl);
destruct (w_succ_c xl) as[l|l];intro H;unfold interp_carry in H;rewrite <-H.
rewrite Zmod_small;trivial.
rewrite wwB_wBwB;apply beta_mult;apply spec_to_Z.
assert ([|l|] = 0). clear spec_ww_1 spec_w_1 spec_w_0.
assert (H1:= spec_to_Z l); assert (H2:= spec_to_Z xl); omega.
rewrite H0;rewrite Z.add_0_r;rewrite <- Z.mul_add_distr_r;rewrite wwB_wBwB.
rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;try apply lt_0_wB.
rewrite spec_w_W0;rewrite spec_w_succ;trivial.
Qed.
Lemma spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB.
Proof.
destruct x as [ |xh xl];intros y.
rewrite Zmod_small;trivial. apply spec_ww_to_Z;trivial.
destruct y as [ |yh yl].
change [[W0]] with 0;rewrite Z.add_0_r.
rewrite Zmod_small;trivial.
exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl)).
simpl. replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]))
with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|])). 2:ring.
generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
unfold interp_carry;intros H;simpl;rewrite <- H.
rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add;trivial.
rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r.
rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add_carry;trivial.
Qed.
Lemma spec_ww_add_carry :
forall x y, [[ww_add_carry x y]] = ([[x]] + [[y]] + 1) mod wwB.
Proof.
destruct x as [ |xh xl];intros y.
exact (spec_ww_succ y).
destruct y as [ |yh yl].
change [[W0]] with 0;rewrite Z.add_0_r. exact (spec_ww_succ (WW xh xl)).
simpl;replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]) + 1)
with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|]+1)). 2:ring.
generalize (spec_w_add_carry_c xl yl);destruct (w_add_carry_c xl yl)
as [l|l];unfold interp_carry;intros H;rewrite <- H;simpl ww_to_Z.
rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add;trivial.
rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r.
rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add_carry;trivial.
Qed.
(* End DoubleProof. *)
End DoubleAdd.
|