1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import BinPos BinNat PeanoNat Pnat.
(** * Conversions from [N] to [nat] *)
Module N2Nat.
(** [N.to_nat] is a bijection between [N] and [nat],
with [Pos.of_nat] as reciprocal.
See [Nat2N.id] below for the dual equation. *)
Lemma id a : N.of_nat (N.to_nat a) = a.
Proof.
destruct a as [| p]; simpl; trivial.
destruct (Pos2Nat.is_succ p) as (n,H). rewrite H. simpl. f_equal.
apply Pos2Nat.inj. rewrite H. apply SuccNat2Pos.id_succ.
Qed.
(** [N.to_nat] is hence injective *)
Lemma inj a a' : N.to_nat a = N.to_nat a' -> a = a'.
Proof.
intro H. rewrite <- (id a), <- (id a'). now f_equal.
Qed.
Lemma inj_iff a a' : N.to_nat a = N.to_nat a' <-> a = a'.
Proof.
split. apply inj. intros; now subst.
Qed.
(** Interaction of this translation and usual operations. *)
Lemma inj_double a : N.to_nat (N.double a) = 2*(N.to_nat a).
Proof.
destruct a; simpl N.to_nat; trivial. apply Pos2Nat.inj_xO.
Qed.
Lemma inj_succ_double a : N.to_nat (N.succ_double a) = S (2*(N.to_nat a)).
Proof.
destruct a; simpl N.to_nat; trivial. apply Pos2Nat.inj_xI.
Qed.
Lemma inj_succ a : N.to_nat (N.succ a) = S (N.to_nat a).
Proof.
destruct a; simpl; trivial. apply Pos2Nat.inj_succ.
Qed.
Lemma inj_add a a' :
N.to_nat (a + a') = N.to_nat a + N.to_nat a'.
Proof.
destruct a, a'; simpl; trivial. apply Pos2Nat.inj_add.
Qed.
Lemma inj_mul a a' :
N.to_nat (a * a') = N.to_nat a * N.to_nat a'.
Proof.
destruct a, a'; simpl; trivial. apply Pos2Nat.inj_mul.
Qed.
Lemma inj_sub a a' :
N.to_nat (a - a') = N.to_nat a - N.to_nat a'.
Proof.
destruct a as [|a], a' as [|a']; simpl; rewrite ?Nat.sub_0_r; trivial.
destruct (Pos.compare_spec a a').
- subst. now rewrite Pos.sub_mask_diag, Nat.sub_diag.
- rewrite Pos.sub_mask_neg; trivial. apply Pos2Nat.inj_lt in H.
simpl; symmetry; apply Nat.sub_0_le. now apply Nat.lt_le_incl.
- destruct (Pos.sub_mask_pos' _ _ H) as (q & -> & Hq).
simpl; symmetry; apply Nat.add_sub_eq_l. now rewrite <- Hq, Pos2Nat.inj_add.
Qed.
Lemma inj_pred a : N.to_nat (N.pred a) = Nat.pred (N.to_nat a).
Proof.
rewrite <- Nat.sub_1_r, N.pred_sub. apply inj_sub.
Qed.
Lemma inj_div2 a : N.to_nat (N.div2 a) = Nat.div2 (N.to_nat a).
Proof.
destruct a as [|[p|p| ]]; trivial.
- unfold N.div2, N.to_nat. now rewrite Pos2Nat.inj_xI, Nat.div2_succ_double.
- unfold N.div2, N.to_nat. now rewrite Pos2Nat.inj_xO, Nat.div2_double.
Qed.
Lemma inj_compare a a' :
(a ?= a')%N = (N.to_nat a ?= N.to_nat a').
Proof.
destruct a, a'; simpl; trivial.
- now destruct (Pos2Nat.is_succ p) as (n,->).
- now destruct (Pos2Nat.is_succ p) as (n,->).
- apply Pos2Nat.inj_compare.
Qed.
Lemma inj_max a a' :
N.to_nat (N.max a a') = Nat.max (N.to_nat a) (N.to_nat a').
Proof.
unfold N.max. rewrite inj_compare; symmetry.
case Nat.compare_spec; intros.
- now apply Nat.max_r, Nat.eq_le_incl.
- now apply Nat.max_r, Nat.lt_le_incl.
- now apply Nat.max_l, Nat.lt_le_incl.
Qed.
Lemma inj_min a a' :
N.to_nat (N.min a a') = Nat.min (N.to_nat a) (N.to_nat a').
Proof.
unfold N.min; rewrite inj_compare. symmetry.
case Nat.compare_spec; intros.
- now apply Nat.min_l, Nat.eq_le_incl.
- now apply Nat.min_l, Nat.lt_le_incl.
- now apply Nat.min_r, Nat.lt_le_incl.
Qed.
Lemma inj_iter a {A} (f:A->A) (x:A) :
N.iter a f x = Nat.iter (N.to_nat a) f x.
Proof.
destruct a as [|a]. trivial. apply Pos2Nat.inj_iter.
Qed.
End N2Nat.
Hint Rewrite N2Nat.inj_double N2Nat.inj_succ_double
N2Nat.inj_succ N2Nat.inj_add N2Nat.inj_mul N2Nat.inj_sub
N2Nat.inj_pred N2Nat.inj_div2 N2Nat.inj_max N2Nat.inj_min
N2Nat.id
: Nnat.
(** * Conversions from [nat] to [N] *)
Module Nat2N.
(** [N.of_nat] is an bijection between [nat] and [N],
with [Pos.to_nat] as reciprocal.
See [N2Nat.id] above for the dual equation. *)
Lemma id n : N.to_nat (N.of_nat n) = n.
Proof.
induction n; simpl; trivial. apply SuccNat2Pos.id_succ.
Qed.
Hint Rewrite id : Nnat.
Ltac nat2N := apply N2Nat.inj; now autorewrite with Nnat.
(** [N.of_nat] is hence injective *)
Lemma inj n n' : N.of_nat n = N.of_nat n' -> n = n'.
Proof.
intros H. rewrite <- (id n), <- (id n'). now f_equal.
Qed.
Lemma inj_iff n n' : N.of_nat n = N.of_nat n' <-> n = n'.
Proof.
split. apply inj. intros; now subst.
Qed.
(** Interaction of this translation and usual operations. *)
Lemma inj_double n : N.of_nat (2*n) = N.double (N.of_nat n).
Proof. nat2N. Qed.
Lemma inj_succ_double n : N.of_nat (S (2*n)) = N.succ_double (N.of_nat n).
Proof. nat2N. Qed.
Lemma inj_succ n : N.of_nat (S n) = N.succ (N.of_nat n).
Proof. nat2N. Qed.
Lemma inj_pred n : N.of_nat (Nat.pred n) = N.pred (N.of_nat n).
Proof. nat2N. Qed.
Lemma inj_add n n' : N.of_nat (n+n') = (N.of_nat n + N.of_nat n')%N.
Proof. nat2N. Qed.
Lemma inj_sub n n' : N.of_nat (n-n') = (N.of_nat n - N.of_nat n')%N.
Proof. nat2N. Qed.
Lemma inj_mul n n' : N.of_nat (n*n') = (N.of_nat n * N.of_nat n')%N.
Proof. nat2N. Qed.
Lemma inj_div2 n : N.of_nat (Nat.div2 n) = N.div2 (N.of_nat n).
Proof. nat2N. Qed.
Lemma inj_compare n n' :
(n ?= n') = (N.of_nat n ?= N.of_nat n')%N.
Proof. now rewrite N2Nat.inj_compare, !id. Qed.
Lemma inj_min n n' :
N.of_nat (Nat.min n n') = N.min (N.of_nat n) (N.of_nat n').
Proof. nat2N. Qed.
Lemma inj_max n n' :
N.of_nat (Nat.max n n') = N.max (N.of_nat n) (N.of_nat n').
Proof. nat2N. Qed.
Lemma inj_iter n {A} (f:A->A) (x:A) :
Nat.iter n f x = N.iter (N.of_nat n) f x.
Proof. now rewrite N2Nat.inj_iter, !id. Qed.
End Nat2N.
Hint Rewrite Nat2N.id : Nnat.
(** Compatibility notations *)
Notation nat_of_N_inj := N2Nat.inj (only parsing).
Notation N_of_nat_of_N := N2Nat.id (only parsing).
Notation nat_of_Ndouble := N2Nat.inj_double (only parsing).
Notation nat_of_Ndouble_plus_one := N2Nat.inj_succ_double (only parsing).
Notation nat_of_Nsucc := N2Nat.inj_succ (only parsing).
Notation nat_of_Nplus := N2Nat.inj_add (only parsing).
Notation nat_of_Nmult := N2Nat.inj_mul (only parsing).
Notation nat_of_Nminus := N2Nat.inj_sub (only parsing).
Notation nat_of_Npred := N2Nat.inj_pred (only parsing).
Notation nat_of_Ndiv2 := N2Nat.inj_div2 (only parsing).
Notation nat_of_Ncompare := N2Nat.inj_compare (only parsing).
Notation nat_of_Nmax := N2Nat.inj_max (only parsing).
Notation nat_of_Nmin := N2Nat.inj_min (only parsing).
Notation nat_of_N_of_nat := Nat2N.id (only parsing).
Notation N_of_nat_inj := Nat2N.inj (only parsing).
Notation N_of_double := Nat2N.inj_double (only parsing).
Notation N_of_double_plus_one := Nat2N.inj_succ_double (only parsing).
Notation N_of_S := Nat2N.inj_succ (only parsing).
Notation N_of_pred := Nat2N.inj_pred (only parsing).
Notation N_of_plus := Nat2N.inj_add (only parsing).
Notation N_of_minus := Nat2N.inj_sub (only parsing).
Notation N_of_mult := Nat2N.inj_mul (only parsing).
Notation N_of_div2 := Nat2N.inj_div2 (only parsing).
Notation N_of_nat_compare := Nat2N.inj_compare (only parsing).
Notation N_of_min := Nat2N.inj_min (only parsing).
Notation N_of_max := Nat2N.inj_max (only parsing).
|