1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import Bool.
Require Import Sumbool.
Require Import Arith.
Require Import BinPos.
Require Import BinNat.
Require Import Pnat.
Require Import Nnat.
Require Import Ndigits.
(** A boolean equality over [N] *)
Fixpoint Peqb (p1 p2:positive) {struct p2} : bool :=
match p1, p2 with
| xH, xH => true
| xO p'1, xO p'2 => Peqb p'1 p'2
| xI p'1, xI p'2 => Peqb p'1 p'2
| _, _ => false
end.
Lemma Peqb_correct : forall p, Peqb p p = true.
Proof.
induction p; auto.
Qed.
Lemma Peqb_Pcompare : forall p p', Peqb p p' = true -> Pcompare p p' Eq = Eq.
Proof.
induction p; destruct p'; simpl; intros; try discriminate; auto.
Qed.
Lemma Pcompare_Peqb : forall p p', Pcompare p p' Eq = Eq -> Peqb p p' = true.
Proof.
intros; rewrite <- (Pcompare_Eq_eq _ _ H).
apply Peqb_correct.
Qed.
Definition Neqb (a a':N) :=
match a, a' with
| N0, N0 => true
| Npos p, Npos p' => Peqb p p'
| _, _ => false
end.
Lemma Neqb_correct : forall n, Neqb n n = true.
Proof.
destruct n; trivial.
simpl; apply Peqb_correct.
Qed.
Lemma Neqb_Ncompare : forall n n', Neqb n n' = true -> Ncompare n n' = Eq.
Proof.
destruct n; destruct n'; simpl; intros; try discriminate; auto; apply Peqb_Pcompare; auto.
Qed.
Lemma Ncompare_Neqb : forall n n', Ncompare n n' = Eq -> Neqb n n' = true.
Proof.
intros; rewrite <- (Ncompare_Eq_eq _ _ H).
apply Neqb_correct.
Qed.
Lemma Neqb_complete : forall a a', Neqb a a' = true -> a = a'.
Proof.
intros.
apply Ncompare_Eq_eq.
apply Neqb_Ncompare; auto.
Qed.
Lemma Neqb_comm : forall a a', Neqb a a' = Neqb a' a.
Proof.
intros; apply bool_1; split; intros.
rewrite (Neqb_complete _ _ H); apply Neqb_correct.
rewrite (Neqb_complete _ _ H); apply Neqb_correct.
Qed.
Lemma Nxor_eq_true :
forall a a', Nxor a a' = N0 -> Neqb a a' = true.
Proof.
intros. rewrite (Nxor_eq a a' H). apply Neqb_correct.
Qed.
Lemma Nxor_eq_false :
forall a a' p, Nxor a a' = Npos p -> Neqb a a' = false.
Proof.
intros. elim (sumbool_of_bool (Neqb a a')). intro H0.
rewrite (Neqb_complete a a' H0) in H. rewrite (Nxor_nilpotent a') in H. discriminate H.
trivial.
Qed.
Lemma Nodd_not_double :
forall a,
Nodd a -> forall a0, Neqb (Ndouble a0) a = false.
Proof.
intros. elim (sumbool_of_bool (Neqb (Ndouble a0) a)). intro H0.
rewrite <- (Neqb_complete _ _ H0) in H.
unfold Nodd in H.
rewrite (Ndouble_bit0 a0) in H. discriminate H.
trivial.
Qed.
Lemma Nnot_div2_not_double :
forall a a0,
Neqb (Ndiv2 a) a0 = false -> Neqb a (Ndouble a0) = false.
Proof.
intros. elim (sumbool_of_bool (Neqb (Ndouble a0) a)). intro H0.
rewrite <- (Neqb_complete _ _ H0) in H. rewrite (Ndouble_div2 a0) in H.
rewrite (Neqb_correct a0) in H. discriminate H.
intro. rewrite Neqb_comm. assumption.
Qed.
Lemma Neven_not_double_plus_one :
forall a,
Neven a -> forall a0, Neqb (Ndouble_plus_one a0) a = false.
Proof.
intros. elim (sumbool_of_bool (Neqb (Ndouble_plus_one a0) a)). intro H0.
rewrite <- (Neqb_complete _ _ H0) in H.
unfold Neven in H.
rewrite (Ndouble_plus_one_bit0 a0) in H.
discriminate H.
trivial.
Qed.
Lemma Nnot_div2_not_double_plus_one :
forall a a0,
Neqb (Ndiv2 a) a0 = false -> Neqb (Ndouble_plus_one a0) a = false.
Proof.
intros. elim (sumbool_of_bool (Neqb a (Ndouble_plus_one a0))). intro H0.
rewrite (Neqb_complete _ _ H0) in H. rewrite (Ndouble_plus_one_div2 a0) in H.
rewrite (Neqb_correct a0) in H. discriminate H.
intro H0. rewrite Neqb_comm. assumption.
Qed.
Lemma Nbit0_neq :
forall a a',
Nbit0 a = false -> Nbit0 a' = true -> Neqb a a' = false.
Proof.
intros. elim (sumbool_of_bool (Neqb a a')). intro H1. rewrite (Neqb_complete _ _ H1) in H.
rewrite H in H0. discriminate H0.
trivial.
Qed.
Lemma Ndiv2_eq :
forall a a', Neqb a a' = true -> Neqb (Ndiv2 a) (Ndiv2 a') = true.
Proof.
intros. cut (a = a'). intros. rewrite H0. apply Neqb_correct.
apply Neqb_complete. exact H.
Qed.
Lemma Ndiv2_neq :
forall a a',
Neqb (Ndiv2 a) (Ndiv2 a') = false -> Neqb a a' = false.
Proof.
intros. elim (sumbool_of_bool (Neqb a a')). intro H0.
rewrite (Neqb_complete _ _ H0) in H. rewrite (Neqb_correct (Ndiv2 a')) in H. discriminate H.
trivial.
Qed.
Lemma Ndiv2_bit_eq :
forall a a',
Nbit0 a = Nbit0 a' -> Ndiv2 a = Ndiv2 a' -> a = a'.
Proof.
intros. apply Nbit_faithful. unfold eqf in |- *. destruct n.
rewrite Nbit0_correct. rewrite Nbit0_correct. assumption.
rewrite <- Ndiv2_correct. rewrite <- Ndiv2_correct.
rewrite H0. reflexivity.
Qed.
Lemma Ndiv2_bit_neq :
forall a a',
Neqb a a' = false ->
Nbit0 a = Nbit0 a' -> Neqb (Ndiv2 a) (Ndiv2 a') = false.
Proof.
intros. elim (sumbool_of_bool (Neqb (Ndiv2 a) (Ndiv2 a'))). intro H1.
rewrite (Ndiv2_bit_eq _ _ H0 (Neqb_complete _ _ H1)) in H.
rewrite (Neqb_correct a') in H. discriminate H.
trivial.
Qed.
Lemma Nneq_elim :
forall a a',
Neqb a a' = false ->
Nbit0 a = negb (Nbit0 a') \/
Neqb (Ndiv2 a) (Ndiv2 a') = false.
Proof.
intros. cut (Nbit0 a = Nbit0 a' \/ Nbit0 a = negb (Nbit0 a')).
intros. elim H0. intro. right. apply Ndiv2_bit_neq. assumption.
assumption.
intro. left. assumption.
case (Nbit0 a); case (Nbit0 a'); auto.
Qed.
Lemma Ndouble_or_double_plus_un :
forall a,
{a0 : N | a = Ndouble a0} + {a1 : N | a = Ndouble_plus_one a1}.
Proof.
intro. elim (sumbool_of_bool (Nbit0 a)). intro H. right. split with (Ndiv2 a).
rewrite (Ndiv2_double_plus_one a H). reflexivity.
intro H. left. split with (Ndiv2 a). rewrite (Ndiv2_double a H). reflexivity.
Qed.
(** A boolean order on [N] *)
Definition Nle (a b:N) := leb (nat_of_N a) (nat_of_N b).
Lemma Nle_Ncompare : forall a b, Nle a b = true <-> Ncompare a b <> Gt.
Proof.
intros; rewrite nat_of_Ncompare.
unfold Nle; apply leb_compare.
Qed.
Lemma Nle_refl : forall a, Nle a a = true.
Proof.
intro. unfold Nle in |- *. apply leb_correct. apply le_n.
Qed.
Lemma Nle_antisym :
forall a b, Nle a b = true -> Nle b a = true -> a = b.
Proof.
unfold Nle in |- *. intros. rewrite <- (N_of_nat_of_N a). rewrite <- (N_of_nat_of_N b).
rewrite (le_antisym _ _ (leb_complete _ _ H) (leb_complete _ _ H0)). reflexivity.
Qed.
Lemma Nle_trans :
forall a b c, Nle a b = true -> Nle b c = true -> Nle a c = true.
Proof.
unfold Nle in |- *. intros. apply leb_correct. apply le_trans with (m := nat_of_N b).
apply leb_complete. assumption.
apply leb_complete. assumption.
Qed.
Lemma Nle_lt_trans :
forall a b c,
Nle a b = true -> Nle c b = false -> Nle c a = false.
Proof.
unfold Nle in |- *. intros. apply leb_correct_conv. apply le_lt_trans with (m := nat_of_N b).
apply leb_complete. assumption.
apply leb_complete_conv. assumption.
Qed.
Lemma Nlt_le_trans :
forall a b c,
Nle b a = false -> Nle b c = true -> Nle c a = false.
Proof.
unfold Nle in |- *. intros. apply leb_correct_conv. apply lt_le_trans with (m := nat_of_N b).
apply leb_complete_conv. assumption.
apply leb_complete. assumption.
Qed.
Lemma Nlt_trans :
forall a b c,
Nle b a = false -> Nle c b = false -> Nle c a = false.
Proof.
unfold Nle in |- *. intros. apply leb_correct_conv. apply lt_trans with (m := nat_of_N b).
apply leb_complete_conv. assumption.
apply leb_complete_conv. assumption.
Qed.
Lemma Nlt_le_weak : forall a b:N, Nle b a = false -> Nle a b = true.
Proof.
unfold Nle in |- *. intros. apply leb_correct. apply lt_le_weak.
apply leb_complete_conv. assumption.
Qed.
Lemma Nle_double_mono :
forall a b,
Nle a b = true -> Nle (Ndouble a) (Ndouble b) = true.
Proof.
unfold Nle in |- *. intros. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. apply leb_correct.
simpl in |- *. apply plus_le_compat. apply leb_complete. assumption.
apply plus_le_compat. apply leb_complete. assumption.
apply le_n.
Qed.
Lemma Nle_double_plus_one_mono :
forall a b,
Nle a b = true ->
Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = true.
Proof.
unfold Nle in |- *. intros. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
apply leb_correct. apply le_n_S. simpl in |- *. apply plus_le_compat. apply leb_complete.
assumption.
apply plus_le_compat. apply leb_complete. assumption.
apply le_n.
Qed.
Lemma Nle_double_mono_conv :
forall a b,
Nle (Ndouble a) (Ndouble b) = true -> Nle a b = true.
Proof.
unfold Nle in |- *. intros a b. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. intro.
apply leb_correct. apply (mult_S_le_reg_l 1). apply leb_complete. assumption.
Qed.
Lemma Nle_double_plus_one_mono_conv :
forall a b,
Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = true ->
Nle a b = true.
Proof.
unfold Nle in |- *. intros a b. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
intro. apply leb_correct. apply (mult_S_le_reg_l 1). apply le_S_n. apply leb_complete.
assumption.
Qed.
Lemma Nlt_double_mono :
forall a b,
Nle a b = false -> Nle (Ndouble a) (Ndouble b) = false.
Proof.
intros. elim (sumbool_of_bool (Nle (Ndouble a) (Ndouble b))). intro H0.
rewrite (Nle_double_mono_conv _ _ H0) in H. discriminate H.
trivial.
Qed.
Lemma Nlt_double_plus_one_mono :
forall a b,
Nle a b = false ->
Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = false.
Proof.
intros. elim (sumbool_of_bool (Nle (Ndouble_plus_one a) (Ndouble_plus_one b))). intro H0.
rewrite (Nle_double_plus_one_mono_conv _ _ H0) in H. discriminate H.
trivial.
Qed.
Lemma Nlt_double_mono_conv :
forall a b,
Nle (Ndouble a) (Ndouble b) = false -> Nle a b = false.
Proof.
intros. elim (sumbool_of_bool (Nle a b)). intro H0. rewrite (Nle_double_mono _ _ H0) in H.
discriminate H.
trivial.
Qed.
Lemma Nlt_double_plus_one_mono_conv :
forall a b,
Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = false ->
Nle a b = false.
Proof.
intros. elim (sumbool_of_bool (Nle a b)). intro H0.
rewrite (Nle_double_plus_one_mono _ _ H0) in H. discriminate H.
trivial.
Qed.
(* A [min] function over [N] *)
Definition Nmin (a b:N) := if Nle a b then a else b.
Lemma Nmin_choice : forall a b, {Nmin a b = a} + {Nmin a b = b}.
Proof.
unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. left. rewrite H.
reflexivity.
intro H. right. rewrite H. reflexivity.
Qed.
Lemma Nmin_le_1 : forall a b, Nle (Nmin a b) a = true.
Proof.
unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. rewrite H.
apply Nle_refl.
intro H. rewrite H. apply Nlt_le_weak. assumption.
Qed.
Lemma Nmin_le_2 : forall a b, Nle (Nmin a b) b = true.
Proof.
unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. rewrite H. assumption.
intro H. rewrite H. apply Nle_refl.
Qed.
Lemma Nmin_le_3 :
forall a b c, Nle a (Nmin b c) = true -> Nle a b = true.
Proof.
unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
assumption.
intro H0. rewrite H0 in H. apply Nlt_le_weak. apply Nle_lt_trans with (b := c); assumption.
Qed.
Lemma Nmin_le_4 :
forall a b c, Nle a (Nmin b c) = true -> Nle a c = true.
Proof.
unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
apply Nle_trans with (b := b); assumption.
intro H0. rewrite H0 in H. assumption.
Qed.
Lemma Nmin_le_5 :
forall a b c,
Nle a b = true -> Nle a c = true -> Nle a (Nmin b c) = true.
Proof.
intros. elim (Nmin_choice b c). intro H1. rewrite H1. assumption.
intro H1. rewrite H1. assumption.
Qed.
Lemma Nmin_lt_3 :
forall a b c, Nle (Nmin b c) a = false -> Nle b a = false.
Proof.
unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
assumption.
intro H0. rewrite H0 in H. apply Nlt_trans with (b := c); assumption.
Qed.
Lemma Nmin_lt_4 :
forall a b c, Nle (Nmin b c) a = false -> Nle c a = false.
Proof.
unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
apply Nlt_le_trans with (b := b); assumption.
intro H0. rewrite H0 in H. assumption.
Qed.
|