1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Unset Boxed Definitions.
(**********************************************************************)
(** Binary positive numbers *)
(** Original development by Pierre Crégut, CNET, Lannion, France *)
Inductive positive : Set :=
| xI : positive -> positive
| xO : positive -> positive
| xH : positive.
(** Declare binding key for scope positive_scope *)
Delimit Scope positive_scope with positive.
(** Automatically open scope positive_scope for type positive, xO and xI *)
Bind Scope positive_scope with positive.
Arguments Scope xO [positive_scope].
Arguments Scope xI [positive_scope].
(** Successor *)
Fixpoint Psucc (x:positive) : positive :=
match x with
| xI x' => xO (Psucc x')
| xO x' => xI x'
| xH => xO xH
end.
(** Addition *)
Set Boxed Definitions.
Fixpoint Pplus (x y:positive) {struct x} : positive :=
match x, y with
| xI x', xI y' => xO (Pplus_carry x' y')
| xI x', xO y' => xI (Pplus x' y')
| xI x', xH => xO (Psucc x')
| xO x', xI y' => xI (Pplus x' y')
| xO x', xO y' => xO (Pplus x' y')
| xO x', xH => xI x'
| xH, xI y' => xO (Psucc y')
| xH, xO y' => xI y'
| xH, xH => xO xH
end
with Pplus_carry (x y:positive) {struct x} : positive :=
match x, y with
| xI x', xI y' => xI (Pplus_carry x' y')
| xI x', xO y' => xO (Pplus_carry x' y')
| xI x', xH => xI (Psucc x')
| xO x', xI y' => xO (Pplus_carry x' y')
| xO x', xO y' => xI (Pplus x' y')
| xO x', xH => xO (Psucc x')
| xH, xI y' => xI (Psucc y')
| xH, xO y' => xO (Psucc y')
| xH, xH => xI xH
end.
Unset Boxed Definitions.
Infix "+" := Pplus : positive_scope.
Open Local Scope positive_scope.
(** From binary positive numbers to Peano natural numbers *)
Fixpoint Pmult_nat (x:positive) (pow2:nat) {struct x} : nat :=
match x with
| xI x' => (pow2 + Pmult_nat x' (pow2 + pow2))%nat
| xO x' => Pmult_nat x' (pow2 + pow2)%nat
| xH => pow2
end.
Definition nat_of_P (x:positive) := Pmult_nat x 1.
(** From Peano natural numbers to binary positive numbers *)
Fixpoint P_of_succ_nat (n:nat) : positive :=
match n with
| O => xH
| S x' => Psucc (P_of_succ_nat x')
end.
(** Operation x -> 2*x-1 *)
Fixpoint Pdouble_minus_one (x:positive) : positive :=
match x with
| xI x' => xI (xO x')
| xO x' => xI (Pdouble_minus_one x')
| xH => xH
end.
(** Predecessor *)
Definition Ppred (x:positive) :=
match x with
| xI x' => xO x'
| xO x' => Pdouble_minus_one x'
| xH => xH
end.
(** An auxiliary type for subtraction *)
Inductive positive_mask : Set :=
| IsNul : positive_mask
| IsPos : positive -> positive_mask
| IsNeg : positive_mask.
(** Operation x -> 2*x+1 *)
Definition Pdouble_plus_one_mask (x:positive_mask) :=
match x with
| IsNul => IsPos xH
| IsNeg => IsNeg
| IsPos p => IsPos (xI p)
end.
(** Operation x -> 2*x *)
Definition Pdouble_mask (x:positive_mask) :=
match x with
| IsNul => IsNul
| IsNeg => IsNeg
| IsPos p => IsPos (xO p)
end.
(** Operation x -> 2*x-2 *)
Definition Pdouble_minus_two (x:positive) :=
match x with
| xI x' => IsPos (xO (xO x'))
| xO x' => IsPos (xO (Pdouble_minus_one x'))
| xH => IsNul
end.
(** Subtraction of binary positive numbers into a positive numbers mask *)
Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
match x, y with
| xI x', xI y' => Pdouble_mask (Pminus_mask x' y')
| xI x', xO y' => Pdouble_plus_one_mask (Pminus_mask x' y')
| xI x', xH => IsPos (xO x')
| xO x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
| xO x', xO y' => Pdouble_mask (Pminus_mask x' y')
| xO x', xH => IsPos (Pdouble_minus_one x')
| xH, xH => IsNul
| xH, _ => IsNeg
end
with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
match x, y with
| xI x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
| xI x', xO y' => Pdouble_mask (Pminus_mask x' y')
| xI x', xH => IsPos (Pdouble_minus_one x')
| xO x', xI y' => Pdouble_mask (Pminus_mask_carry x' y')
| xO x', xO y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
| xO x', xH => Pdouble_minus_two x'
| xH, _ => IsNeg
end.
(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)
Definition Pminus (x y:positive) :=
match Pminus_mask x y with
| IsPos z => z
| _ => xH
end.
Infix "-" := Pminus : positive_scope.
(** Multiplication on binary positive numbers *)
Fixpoint Pmult (x y:positive) {struct x} : positive :=
match x with
| xI x' => y + xO (Pmult x' y)
| xO x' => xO (Pmult x' y)
| xH => y
end.
Infix "*" := Pmult : positive_scope.
(** Division by 2 rounded below but for 1 *)
Definition Pdiv2 (z:positive) :=
match z with
| xH => xH
| xO p => p
| xI p => p
end.
Infix "/" := Pdiv2 : positive_scope.
(** Comparison on binary positive numbers *)
Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison :=
match x, y with
| xI x', xI y' => Pcompare x' y' r
| xI x', xO y' => Pcompare x' y' Gt
| xI x', xH => Gt
| xO x', xI y' => Pcompare x' y' Lt
| xO x', xO y' => Pcompare x' y' r
| xO x', xH => Gt
| xH, xI y' => Lt
| xH, xO y' => Lt
| xH, xH => r
end.
Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope.
(**********************************************************************)
(** Miscellaneous properties of binary positive numbers *)
Lemma ZL11 : forall p:positive, p = xH \/ p <> xH.
Proof.
intros x; case x; intros; (left; reflexivity) || (right; discriminate).
Qed.
(**********************************************************************)
(** Properties of successor on binary positive numbers *)
(** Specification of [xI] in term of [Psucc] and [xO] *)
Lemma xI_succ_xO : forall p:positive, xI p = Psucc (xO p).
Proof.
reflexivity.
Qed.
Lemma Psucc_discr : forall p:positive, p <> Psucc p.
Proof.
intro x; destruct x as [p| p| ]; discriminate.
Qed.
(** Successor and double *)
Lemma Psucc_o_double_minus_one_eq_xO :
forall p:positive, Psucc (Pdouble_minus_one p) = xO p.
Proof.
intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
reflexivity.
Qed.
Lemma Pdouble_minus_one_o_succ_eq_xI :
forall p:positive, Pdouble_minus_one (Psucc p) = xI p.
Proof.
intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
reflexivity.
Qed.
Lemma xO_succ_permute :
forall p:positive, xO (Psucc p) = Psucc (Psucc (xO p)).
Proof.
intro y; induction y as [y Hrecy| y Hrecy| ]; simpl in |- *; auto.
Qed.
Lemma double_moins_un_xO_discr :
forall p:positive, Pdouble_minus_one p <> xO p.
Proof.
intro x; destruct x as [p| p| ]; discriminate.
Qed.
(** Successor and predecessor *)
Lemma Psucc_not_one : forall p:positive, Psucc p <> xH.
Proof.
intro x; destruct x as [x| x| ]; discriminate.
Qed.
Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p.
Proof.
intro x; destruct x as [p| p| ]; [ idtac | idtac | simpl in |- *; auto ];
(induction p as [p IHp| | ]; [ idtac | reflexivity | reflexivity ]);
simpl in |- *; simpl in IHp; try rewrite <- IHp; reflexivity.
Qed.
Lemma Psucc_pred : forall p:positive, p = xH \/ Psucc (Ppred p) = p.
Proof.
intro x; induction x as [x Hrecx| x Hrecx| ];
[ simpl in |- *; auto
| simpl in |- *; intros; right; apply Psucc_o_double_minus_one_eq_xO
| auto ].
Qed.
(** Injectivity of successor *)
Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q.
Proof.
intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
discriminate H || (try (injection H; clear H; intro H)).
rewrite (IHx y H); reflexivity.
absurd (Psucc x = xH); [ apply Psucc_not_one | assumption ].
apply f_equal with (1 := H); assumption.
absurd (Psucc y = xH);
[ apply Psucc_not_one | symmetry in |- *; assumption ].
reflexivity.
Qed.
(**********************************************************************)
(** Properties of addition on binary positive numbers *)
(** Specification of [Psucc] in term of [Pplus] *)
Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + xH.
Proof.
intro q; destruct q as [p| p| ]; reflexivity.
Qed.
Lemma Pplus_one_succ_l : forall p:positive, Psucc p = xH + p.
Proof.
intro q; destruct q as [p| p| ]; reflexivity.
Qed.
(** Specification of [Pplus_carry] *)
Theorem Pplus_carry_spec :
forall p q:positive, Pplus_carry p q = Psucc (p + q).
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; auto; rewrite IHp;
auto.
Qed.
(** Commutativity *)
Theorem Pplus_comm : forall p q:positive, p + q = q + p.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; auto;
try do 2 rewrite Pplus_carry_spec; rewrite IHp; auto.
Qed.
(** Permutation of [Pplus] and [Psucc] *)
Theorem Pplus_succ_permute_r :
forall p q:positive, p + Psucc q = Psucc (p + q).
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; auto;
[ rewrite Pplus_carry_spec; rewrite IHp; auto
| rewrite Pplus_carry_spec; auto
| destruct p; simpl in |- *; auto
| rewrite IHp; auto
| destruct p; simpl in |- *; auto ].
Qed.
Theorem Pplus_succ_permute_l :
forall p q:positive, Psucc p + q = Psucc (p + q).
Proof.
intros x y; rewrite Pplus_comm; rewrite Pplus_comm with (p := x);
apply Pplus_succ_permute_r.
Qed.
Theorem Pplus_carry_pred_eq_plus :
forall p q:positive, q <> xH -> Pplus_carry p (Ppred q) = p + q.
Proof.
intros q z H; elim (Psucc_pred z);
[ intro; absurd (z = xH); auto
| intros E; pattern z at 2 in |- *; rewrite <- E;
rewrite Pplus_succ_permute_r; rewrite Pplus_carry_spec;
trivial ].
Qed.
(** No neutral for addition on strictly positive numbers *)
Lemma Pplus_no_neutral : forall p q:positive, q + p <> p.
Proof.
intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
discriminate H || injection H; clear H; intro H; apply (IHx y H).
Qed.
Lemma Pplus_carry_no_neutral :
forall p q:positive, Pplus_carry q p <> Psucc p.
Proof.
intros x y H; absurd (y + x = x);
[ apply Pplus_no_neutral
| apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption ].
Qed.
(** Simplification *)
Lemma Pplus_carry_plus :
forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
Proof.
intros x y z t H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
assumption.
Qed.
Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q.
Proof.
intros x y z; generalize x y; clear x y.
induction z as [z| z| ].
destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
intro H; discriminate H || (try (injection H; clear H; intro H)).
rewrite IHz with (1 := Pplus_carry_plus _ _ _ _ H); reflexivity.
absurd (Pplus_carry x z = Psucc z);
[ apply Pplus_carry_no_neutral | assumption ].
rewrite IHz with (1 := H); reflexivity.
symmetry in H; absurd (Pplus_carry y z = Psucc z);
[ apply Pplus_carry_no_neutral | assumption ].
reflexivity.
destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
intro H; discriminate H || (try (injection H; clear H; intro H)).
rewrite IHz with (1 := H); reflexivity.
absurd (x + z = z); [ apply Pplus_no_neutral | assumption ].
rewrite IHz with (1 := H); reflexivity.
symmetry in H; absurd (y + z = z);
[ apply Pplus_no_neutral | assumption ].
reflexivity.
intros H x y; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
Qed.
Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r.
Proof.
intros x y z H; apply Pplus_reg_r with (r := x);
rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
assumption.
Qed.
Lemma Pplus_carry_reg_r :
forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
Proof.
intros x y z H; apply Pplus_reg_r with (r := z); apply Pplus_carry_plus;
assumption.
Qed.
Lemma Pplus_carry_reg_l :
forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
Proof.
intros x y z H; apply Pplus_reg_r with (r := x);
rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
apply Pplus_carry_plus; assumption.
Qed.
(** Addition on positive is associative *)
Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r.
Proof.
intros x y; generalize x; clear x.
induction y as [y| y| ]; intro x.
destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
repeat rewrite Pplus_succ_permute_l;
reflexivity || (repeat apply f_equal with (A := positive));
apply IHy.
destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
repeat rewrite Pplus_succ_permute_l;
reflexivity || (repeat apply f_equal with (A := positive));
apply IHy.
intro z; rewrite Pplus_comm with (p := xH);
do 2 rewrite <- Pplus_one_succ_r; rewrite Pplus_succ_permute_l;
rewrite Pplus_succ_permute_r; reflexivity.
Qed.
(** Commutation of addition with the double of a positive number *)
Lemma Pplus_xI_double_minus_one :
forall p q:positive, xO (p + q) = xI p + Pdouble_minus_one q.
Proof.
intros; change (xI p) with (xO p + xH) in |- *.
rewrite <- Pplus_assoc; rewrite <- Pplus_one_succ_l;
rewrite Psucc_o_double_minus_one_eq_xO.
reflexivity.
Qed.
Lemma Pplus_xO_double_minus_one :
forall p q:positive, Pdouble_minus_one (p + q) = xO p + Pdouble_minus_one q.
Proof.
induction p as [p IHp| p IHp| ]; destruct q as [q| q| ]; simpl in |- *;
try rewrite Pplus_carry_spec; try rewrite Pdouble_minus_one_o_succ_eq_xI;
try rewrite IHp; try rewrite Pplus_xI_double_minus_one;
try reflexivity.
rewrite <- Psucc_o_double_minus_one_eq_xO; rewrite Pplus_one_succ_l;
reflexivity.
Qed.
(** Misc *)
Lemma Pplus_diag : forall p:positive, p + p = xO p.
Proof.
intro x; induction x; simpl in |- *; try rewrite Pplus_carry_spec;
try rewrite IHx; reflexivity.
Qed.
(**********************************************************************)
(** Peano induction on binary positive positive numbers *)
Fixpoint plus_iter (x y:positive) {struct x} : positive :=
match x with
| xH => Psucc y
| xO x => plus_iter x (plus_iter x y)
| xI x => plus_iter x (plus_iter x (Psucc y))
end.
Lemma plus_iter_eq_plus : forall p q:positive, plus_iter p q = p + q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; reflexivity || (do 2 rewrite IHp);
rewrite Pplus_assoc; rewrite Pplus_diag; try reflexivity.
rewrite Pplus_carry_spec; rewrite <- Pplus_succ_permute_r; reflexivity.
rewrite Pplus_one_succ_r; reflexivity.
Qed.
Lemma plus_iter_xO : forall p:positive, plus_iter p p = xO p.
Proof.
intro; rewrite <- Pplus_diag; apply plus_iter_eq_plus.
Qed.
Lemma plus_iter_xI : forall p:positive, Psucc (plus_iter p p) = xI p.
Proof.
intro; rewrite xI_succ_xO; rewrite <- Pplus_diag;
apply (f_equal (A:=positive)); apply plus_iter_eq_plus.
Qed.
Lemma iterate_add :
forall P:positive -> Type,
(forall n:positive, P n -> P (Psucc n)) ->
forall p q:positive, P q -> P (plus_iter p q).
Proof.
intros P H; induction p; simpl in |- *; intros.
apply IHp; apply IHp; apply H; assumption.
apply IHp; apply IHp; assumption.
apply H; assumption.
Defined.
(** Peano induction *)
Theorem Pind :
forall P:positive -> Prop,
P xH -> (forall n:positive, P n -> P (Psucc n)) -> forall p:positive, P p.
Proof.
intros P H1 Hsucc n; induction n.
rewrite <- plus_iter_xI; apply Hsucc; apply iterate_add; assumption.
rewrite <- plus_iter_xO; apply iterate_add; assumption.
assumption.
Qed.
(** Peano recursion *)
Definition Prec (A:Set) (a:A) (f:positive -> A -> A) :
positive -> A :=
(fix Prec (p:positive) : A :=
match p with
| xH => a
| xO p => iterate_add (fun _ => A) f p p (Prec p)
| xI p => f (plus_iter p p) (iterate_add (fun _ => A) f p p (Prec p))
end).
(** Peano case analysis *)
Theorem Pcase :
forall P:positive -> Prop,
P xH -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
Proof.
intros; apply Pind; auto.
Qed.
(*
Check
(let fact := Prec positive xH (fun p r => Psucc p * r) in
let seven := xI (xI xH) in
let five_thousand_forty :=
xO (xO (xO (xO (xI (xI (xO (xI (xI (xI (xO (xO xH))))))))))) in
refl_equal _:fact seven = five_thousand_forty).
*)
(**********************************************************************)
(** Properties of multiplication on binary positive numbers *)
(** One is right neutral for multiplication *)
Lemma Pmult_1_r : forall p:positive, p * xH = p.
Proof.
intro x; induction x; simpl in |- *.
rewrite IHx; reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
(** Right reduction properties for multiplication *)
Lemma Pmult_xO_permute_r : forall p q:positive, p * xO q = xO (p * q).
Proof.
intros x y; induction x; simpl in |- *.
rewrite IHx; reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
Lemma Pmult_xI_permute_r : forall p q:positive, p * xI q = p + xO (p * q).
Proof.
intros x y; induction x; simpl in |- *.
rewrite IHx; do 2 rewrite Pplus_assoc; rewrite Pplus_comm with (p := y);
reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
(** Commutativity of multiplication *)
Theorem Pmult_comm : forall p q:positive, p * q = q * p.
Proof.
intros x y; induction y; simpl in |- *.
rewrite <- IHy; apply Pmult_xI_permute_r.
rewrite <- IHy; apply Pmult_xO_permute_r.
apply Pmult_1_r.
Qed.
(** Distributivity of multiplication over addition *)
Theorem Pmult_plus_distr_l :
forall p q r:positive, p * (q + r) = p * q + p * r.
Proof.
intros x y z; induction x; simpl in |- *.
rewrite IHx; rewrite <- Pplus_assoc with (q := xO (x * y));
rewrite Pplus_assoc with (p := xO (x * y));
rewrite Pplus_comm with (p := xO (x * y));
rewrite <- Pplus_assoc with (q := xO (x * y));
rewrite Pplus_assoc with (q := z); reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
Theorem Pmult_plus_distr_r :
forall p q r:positive, (p + q) * r = p * r + q * r.
Proof.
intros x y z; do 3 rewrite Pmult_comm with (q := z); apply Pmult_plus_distr_l.
Qed.
(** Associativity of multiplication *)
Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r.
Proof.
intro x; induction x as [x| x| ]; simpl in |- *; intros y z.
rewrite IHx; rewrite Pmult_plus_distr_r; reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
(** Parity properties of multiplication *)
Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, xI p * r <> xO q * r.
Proof.
intros x y z; induction z as [| z IHz| ]; try discriminate.
intro H; apply IHz; clear IHz.
do 2 rewrite Pmult_xO_permute_r in H.
injection H; clear H; intro H; exact H.
Qed.
Lemma Pmult_xO_discr : forall p q:positive, xO p * q <> q.
Proof.
intros x y; induction y; try discriminate.
rewrite Pmult_xO_permute_r; injection; assumption.
Qed.
(** Simplification properties of multiplication *)
Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
intros z H; reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
simpl in H; apply IHp with (xO z); simpl in |- *;
do 2 rewrite Pmult_xO_permute_r; apply Pplus_reg_l with (1 := H).
apply Pmult_xI_mult_xO_discr with (1 := H).
simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1 := H).
symmetry in H; apply Pmult_xI_mult_xO_discr with (1 := H).
apply IHp with (xO z); simpl in |- *; do 2 rewrite Pmult_xO_permute_r;
assumption.
apply Pmult_xO_discr with (1 := H).
simpl in H; symmetry in H; rewrite Pplus_comm in H;
apply Pplus_no_neutral with (1 := H).
symmetry in H; apply Pmult_xO_discr with (1 := H).
Qed.
Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q.
Proof.
intros x y z H; apply Pmult_reg_r with (r := z).
rewrite Pmult_comm with (p := x); rewrite Pmult_comm with (p := y);
assumption.
Qed.
(** Inversion of multiplication *)
Lemma Pmult_1_inversion_l : forall p q:positive, p * q = xH -> p = xH.
Proof.
intros x y; destruct x as [p| p| ]; simpl in |- *.
destruct y as [p0| p0| ]; intro; discriminate.
intro; discriminate.
reflexivity.
Qed.
(**********************************************************************)
(** Properties of comparison on binary positive numbers *)
Theorem Pcompare_not_Eq :
forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
split; simpl in |- *; auto; discriminate || (elim (IHp q); auto).
Qed.
Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
simpl in |- *; auto; intro H;
[ rewrite (IHp q); trivial
| absurd ((p ?= q) Gt = Eq);
[ elim (Pcompare_not_Eq p q); auto | assumption ]
| discriminate H
| absurd ((p ?= q) Lt = Eq);
[ elim (Pcompare_not_Eq p q); auto | assumption ]
| rewrite (IHp q); auto
| discriminate H
| discriminate H
| discriminate H ].
Qed.
Lemma Pcompare_Gt_Lt :
forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
Proof.
intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
[ induction y as [y Hrecy| y Hrecy| ]
| induction y as [y Hrecy| y Hrecy| ]
| induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
auto; discriminate || intros H; discriminate H.
Qed.
Lemma Pcompare_Lt_Gt :
forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
Proof.
intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
[ induction y as [y Hrecy| y Hrecy| ]
| induction y as [y Hrecy| y Hrecy| ]
| induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
auto; discriminate || intros H; discriminate H.
Qed.
Lemma Pcompare_Lt_Lt :
forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
auto; intros E; rewrite E; auto.
Qed.
Lemma Pcompare_Gt_Gt :
forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
auto; intros E; rewrite E; auto.
Qed.
Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
Proof.
simple induction r; auto.
Qed.
Ltac ElimPcompare c1 c2 :=
elim (Dcompare ((c1 ?= c2) Eq));
[ idtac | let x := fresh "H" in
(intro x; case x; clear x) ].
Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
intro x; induction x as [x Hrecx| x Hrecx| ]; auto.
Qed.
Lemma Pcompare_antisym :
forall (p q:positive) (r:comparison),
CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; intro r;
reflexivity ||
(symmetry in |- *; assumption) || discriminate H || simpl in |- *;
apply IHp || (try rewrite IHp); try reflexivity.
Qed.
Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt.
Proof.
intros; change Eq with (CompOpp Eq) in |- *.
rewrite <- Pcompare_antisym; rewrite H; reflexivity.
Qed.
Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt.
Proof.
intros; change Eq with (CompOpp Eq) in |- *.
rewrite <- Pcompare_antisym; rewrite H; reflexivity.
Qed.
Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq.
Proof.
intros; change Eq with (CompOpp Eq) in |- *.
rewrite <- Pcompare_antisym; rewrite H; reflexivity.
Qed.
Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq).
Proof.
intros; change Eq at 1 with (CompOpp Eq) in |- *.
symmetry in |- *; apply Pcompare_antisym.
Qed.
(**********************************************************************)
(** Properties of subtraction on binary positive numbers *)
Lemma double_eq_zero_inversion :
forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
Proof.
destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
Qed.
Lemma double_plus_one_zero_discr :
forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
Proof.
simple induction p; intros; discriminate.
Qed.
Lemma double_plus_one_eq_one_inversion :
forall p:positive_mask, Pdouble_plus_one_mask p = IsPos xH -> p = IsNul.
Proof.
destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
Qed.
Lemma double_eq_one_discr :
forall p:positive_mask, Pdouble_mask p <> IsPos xH.
Proof.
simple induction p; intros; discriminate.
Qed.
Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul.
Proof.
intro x; induction x as [p IHp| p IHp| ];
[ simpl in |- *; rewrite IHp; simpl in |- *; trivial
| simpl in |- *; rewrite IHp; auto
| auto ].
Qed.
Lemma ZL10 :
forall p q:positive,
Pminus_mask p q = IsPos xH -> Pminus_mask_carry p q = IsNul.
Proof.
intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
simpl in |- *; intro H; try discriminate H;
[ absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
[ apply double_eq_one_discr | assumption ]
| assert (Heq : Pminus_mask p q = IsNul);
[ apply double_plus_one_eq_one_inversion; assumption
| rewrite Heq; reflexivity ]
| assert (Heq : Pminus_mask_carry p q = IsNul);
[ apply double_plus_one_eq_one_inversion; assumption
| rewrite Heq; reflexivity ]
| absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
[ apply double_eq_one_discr | assumption ]
| destruct p; simpl in |- *;
[ discriminate H | discriminate H | reflexivity ] ].
Qed.
(** Properties of subtraction valid only for x>y *)
Lemma Pminus_mask_Gt :
forall p q:positive,
(p ?= q) Eq = Gt ->
exists h : positive,
Pminus_mask p q = IsPos h /\
q + h = p /\ (h = xH \/ Pminus_mask_carry p q = IsPos (Ppred h)).
Proof.
intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
simpl in |- *; intro H; try discriminate H.
destruct (IHp q H) as [z [H4 [H6 H7]]]; exists (xO z); split.
rewrite H4; reflexivity.
split.
simpl in |- *; rewrite H6; reflexivity.
right; clear H6; destruct (ZL11 z) as [H8| H8];
[ rewrite H8; rewrite H8 in H4; rewrite ZL10;
[ reflexivity | assumption ]
| clear H4; destruct H7 as [H9| H9];
[ absurd (z = xH); assumption
| rewrite H9; clear H9; destruct z as [p0| p0| ];
[ reflexivity | reflexivity | absurd (xH = xH); trivial ] ] ].
case Pcompare_Gt_Gt with (1 := H);
[ intros H3; elim (IHp q H3); intros z H4; exists (xI z); elim H4;
intros H5 H6; elim H6; intros H7 H8; split;
[ simpl in |- *; rewrite H5; auto
| split;
[ simpl in |- *; rewrite H7; trivial
| right;
change (Pdouble_mask (Pminus_mask p q) = IsPos (Ppred (xI z)))
in |- *; rewrite H5; auto ] ]
| intros H3; exists xH; rewrite H3; split;
[ simpl in |- *; rewrite Pminus_mask_diag; auto | split; auto ] ].
exists (xO p); auto.
destruct (IHp q) as [z [H4 [H6 H7]]].
apply Pcompare_Lt_Gt; assumption.
destruct (ZL11 z) as [vZ| ];
[ exists xH; split;
[ rewrite ZL10; [ reflexivity | rewrite vZ in H4; assumption ]
| split;
[ simpl in |- *; rewrite Pplus_one_succ_r; rewrite <- vZ;
rewrite H6; trivial
| auto ] ]
| exists (xI (Ppred z)); destruct H7 as [| H8];
[ absurd (z = xH); assumption
| split;
[ rewrite H8; trivial
| split;
[ simpl in |- *; rewrite Pplus_carry_pred_eq_plus;
[ rewrite H6; trivial | assumption ]
| right; rewrite H8; reflexivity ] ] ] ].
destruct (IHp q H) as [z [H4 [H6 H7]]].
exists (xO z); split;
[ rewrite H4; auto
| split;
[ simpl in |- *; rewrite H6; reflexivity
| right;
change
(Pdouble_plus_one_mask (Pminus_mask_carry p q) =
IsPos (Pdouble_minus_one z)) in |- *;
destruct (ZL11 z) as [H8| H8];
[ rewrite H8; simpl in |- *;
assert (H9 : Pminus_mask_carry p q = IsNul);
[ apply ZL10; rewrite <- H8; assumption
| rewrite H9; reflexivity ]
| destruct H7 as [H9| H9];
[ absurd (z = xH); auto
| rewrite H9; destruct z as [p0| p0| ]; simpl in |- *;
[ reflexivity
| reflexivity
| absurd (xH = xH); [ assumption | reflexivity ] ] ] ] ] ].
exists (Pdouble_minus_one p); split;
[ reflexivity
| clear IHp; split;
[ destruct p; simpl in |- *;
[ reflexivity
| rewrite Psucc_o_double_minus_one_eq_xO; reflexivity
| reflexivity ]
| destruct p; [ right | right | left ]; reflexivity ] ].
Qed.
Theorem Pplus_minus :
forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
Proof.
intros x y H; elim Pminus_mask_Gt with (1 := H); intros z H1; elim H1;
intros H2 H3; elim H3; intros H4 H5; unfold Pminus in |- *;
rewrite H2; exact H4.
Qed.
|