1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(** * Finite map library *)
(** This file proposes an implementation of the non-dependant interface
[MMapInterface.WS] using lists of pairs, unordered but without redundancy. *)
Require Import MMapInterface EqualitiesFacts.
Set Implicit Arguments.
Unset Strict Implicit.
Lemma Some_iff {A} (a a' : A) : Some a = Some a' <-> a = a'.
Proof. split; congruence. Qed.
Module Raw (X:DecidableType).
Module Import PX := KeyDecidableType X.
Definition key := X.t.
Definition t (elt:Type) := list (X.t * elt).
Ltac dec := match goal with
| |- context [ X.eq_dec ?x ?x ] =>
let E := fresh "E" in destruct (X.eq_dec x x) as [E|E]; [ | now elim E]
| H : X.eq ?x ?y |- context [ X.eq_dec ?x ?y ] =>
let E := fresh "E" in destruct (X.eq_dec x y) as [_|E]; [ | now elim E]
| H : ~X.eq ?x ?y |- context [ X.eq_dec ?x ?y ] =>
let E := fresh "E" in destruct (X.eq_dec x y) as [E|_]; [ now elim H | ]
| |- context [ X.eq_dec ?x ?y ] =>
let E := fresh "E" in destruct (X.eq_dec x y) as [E|E]
end.
Section Elt.
Variable elt : Type.
Notation NoDupA := (@NoDupA _ eqk).
(** * [find] *)
Fixpoint find (k:key) (s: t elt) : option elt :=
match s with
| nil => None
| (k',x)::s' => if X.eq_dec k k' then Some x else find k s'
end.
Lemma find_spec : forall m (Hm:NoDupA m) x e,
find x m = Some e <-> MapsTo x e m.
Proof.
unfold PX.MapsTo.
induction m as [ | (k,e) m IH]; simpl.
- split; inversion 1.
- intros Hm k' e'. rewrite InA_cons.
change (eqke (k',e') (k,e)) with (X.eq k' k /\ e' = e).
inversion_clear Hm. dec.
+ rewrite Some_iff; intuition.
elim H. apply InA_eqk with (k',e'); auto.
+ rewrite IH; intuition.
Qed.
(** * [mem] *)
Fixpoint mem (k : key) (s : t elt) : bool :=
match s with
| nil => false
| (k',_) :: l => if X.eq_dec k k' then true else mem k l
end.
Lemma mem_spec : forall m (Hm:NoDupA m) x, mem x m = true <-> In x m.
Proof.
induction m as [ | (k,e) m IH]; simpl; intros Hm x.
- split. discriminate. inversion_clear 1. inversion H0.
- inversion_clear Hm. rewrite PX.In_cons; simpl.
rewrite <- IH by trivial.
dec; intuition.
Qed.
(** * [empty] *)
Definition empty : t elt := nil.
Lemma empty_spec x : find x empty = None.
Proof.
reflexivity.
Qed.
Lemma empty_NoDup : NoDupA empty.
Proof.
unfold empty; auto.
Qed.
(** * [is_empty] *)
Definition is_empty (l : t elt) : bool := if l then true else false.
Lemma is_empty_spec m : is_empty m = true <-> forall x, find x m = None.
Proof.
destruct m; simpl; intuition; try discriminate.
specialize (H a).
revert H. now dec.
Qed.
(* Not part of the exported specifications, used later for [merge]. *)
Lemma find_eq : forall m (Hm:NoDupA m) x x',
X.eq x x' -> find x m = find x' m.
Proof.
induction m; simpl; auto; destruct a; intros.
inversion_clear Hm.
rewrite (IHm H1 x x'); auto.
dec; dec; trivial.
elim E0. now transitivity x.
elim E. now transitivity x'.
Qed.
(** * [add] *)
Fixpoint add (k : key) (x : elt) (s : t elt) : t elt :=
match s with
| nil => (k,x) :: nil
| (k',y) :: l => if X.eq_dec k k' then (k,x)::l else (k',y)::add k x l
end.
Lemma add_spec1 m x e : find x (add x e m) = Some e.
Proof.
induction m as [ | (k,e') m IH]; simpl.
- now dec.
- dec; simpl; now dec.
Qed.
Lemma add_spec2 m x y e : ~X.eq x y -> find y (add x e m) = find y m.
Proof.
intros N.
assert (N' : ~X.eq y x) by now contradict N.
induction m as [ | (k,e') m IH]; simpl.
- dec; trivial.
- repeat (dec; simpl); trivial. elim N. now transitivity k.
Qed.
Lemma add_InA : forall m x y e e',
~ X.eq x y -> InA eqk (y,e) (add x e' m) -> InA eqk (y,e) m.
Proof.
induction m as [ | (k,e') m IH]; simpl; intros.
- inversion_clear H0. elim H. symmetry; apply H1. inversion_clear H1.
- revert H0; dec; rewrite !InA_cons.
+ rewrite E. intuition.
+ intuition. right; eapply IH; eauto.
Qed.
Lemma add_NoDup : forall m (Hm:NoDupA m) x e, NoDupA (add x e m).
Proof.
induction m as [ | (k,e') m IH]; simpl; intros Hm x e.
- constructor; auto. now inversion 1.
- inversion_clear Hm. dec; constructor; auto.
+ contradict H. apply InA_eqk with (x,e); auto.
+ contradict H; apply add_InA with x e; auto.
Qed.
(** * [remove] *)
Fixpoint remove (k : key) (s : t elt) : t elt :=
match s with
| nil => nil
| (k',x) :: l => if X.eq_dec k k' then l else (k',x) :: remove k l
end.
Lemma remove_spec1 m (Hm: NoDupA m) x : find x (remove x m) = None.
Proof.
induction m as [ | (k,e') m IH]; simpl; trivial.
inversion_clear Hm.
repeat (dec; simpl); auto.
destruct (find x m) eqn:F; trivial.
apply find_spec in F; trivial.
elim H. apply InA_eqk with (x,e); auto.
Qed.
Lemma remove_spec2 m (Hm: NoDupA m) x y : ~X.eq x y ->
find y (remove x m) = find y m.
Proof.
induction m as [ | (k,e') m IH]; simpl; trivial; intros E.
inversion_clear Hm.
repeat (dec; simpl); auto.
elim E. now transitivity k.
Qed.
Lemma remove_InA : forall m (Hm:NoDupA m) x y e,
InA eqk (y,e) (remove x m) -> InA eqk (y,e) m.
Proof.
induction m as [ | (k,e') m IH]; simpl; trivial; intros.
inversion_clear Hm.
revert H; dec; rewrite !InA_cons; intuition.
right; eapply H; eauto.
Qed.
Lemma remove_NoDup : forall m (Hm:NoDupA m) x, NoDupA (remove x m).
Proof.
induction m.
simpl; intuition.
intros.
inversion_clear Hm.
destruct a as (x',e').
simpl; case (X.eq_dec x x'); auto.
constructor; auto.
contradict H; apply remove_InA with x; auto.
Qed.
(** * [bindings] *)
Definition bindings (m: t elt) := m.
Lemma bindings_spec1 m x e : InA eqke (x,e) (bindings m) <-> MapsTo x e m.
Proof.
reflexivity.
Qed.
Lemma bindings_spec2w m (Hm:NoDupA m) : NoDupA (bindings m).
Proof.
trivial.
Qed.
(** * [fold] *)
Fixpoint fold (A:Type)(f:key->elt->A->A)(m:t elt) (acc : A) : A :=
match m with
| nil => acc
| (k,e)::m' => fold f m' (f k e acc)
end.
Lemma fold_spec : forall m (A:Type)(i:A)(f:key->elt->A->A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (bindings m) i.
Proof.
induction m as [ | (k,e) m IH]; simpl; auto.
Qed.
(** * [equal] *)
Definition check (cmp : elt -> elt -> bool)(k:key)(e:elt)(m': t elt) :=
match find k m' with
| None => false
| Some e' => cmp e e'
end.
Definition submap (cmp : elt -> elt -> bool)(m m' : t elt) : bool :=
fold (fun k e b => andb (check cmp k e m') b) m true.
Definition equal (cmp : elt -> elt -> bool)(m m' : t elt) : bool :=
andb (submap cmp m m') (submap (fun e' e => cmp e e') m' m).
Definition Submap (cmp:elt->elt->bool) m m' :=
(forall k, In k m -> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Definition Equivb (cmp:elt->elt->bool) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Lemma submap_1 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
Submap cmp m m' -> submap cmp m m' = true.
Proof.
unfold Submap, submap.
induction m.
simpl; auto.
destruct a; simpl; intros.
destruct H.
inversion_clear Hm.
assert (H3 : In t0 m').
{ apply H; exists e; auto with *. }
destruct H3 as (e', H3).
assert (H4 : find t0 m' = Some e') by now apply find_spec.
unfold check at 2. rewrite H4.
rewrite (H0 t0); simpl; auto with *.
eapply IHm; auto.
split; intuition.
apply H.
destruct H6 as (e'',H6); exists e''; auto.
apply H0 with k; auto.
Qed.
Lemma submap_2 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
submap cmp m m' = true -> Submap cmp m m'.
Proof.
unfold Submap, submap.
induction m.
simpl; auto.
intuition.
destruct H0; inversion H0.
inversion H0.
destruct a; simpl; intros.
inversion_clear Hm.
rewrite andb_b_true in H.
assert (check cmp t0 e m' = true).
clear H1 H0 Hm' IHm.
set (b:=check cmp t0 e m') in *.
generalize H; clear H; generalize b; clear b.
induction m; simpl; auto; intros.
destruct a; simpl in *.
destruct (andb_prop _ _ (IHm _ H)); auto.
rewrite H2 in H.
destruct (IHm H1 m' Hm' cmp H); auto.
unfold check in H2.
case_eq (find t0 m'); [intros e' H5 | intros H5];
rewrite H5 in H2; try discriminate.
split; intros.
destruct H6 as (e0,H6); inversion_clear H6.
compute in H7; destruct H7; subst.
exists e'.
apply PX.MapsTo_eq with t0; auto with *.
apply find_spec; auto.
apply H3.
exists e0; auto.
inversion_clear H6.
compute in H8; destruct H8; subst.
assert (H8 : MapsTo t0 e'0 m'). { eapply PX.MapsTo_eq; eauto. }
apply find_spec in H8; trivial. congruence.
apply H4 with k; auto.
Qed.
(** Specification of [equal] *)
Lemma equal_spec : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
equal cmp m m' = true <-> Equivb cmp m m'.
Proof.
unfold Equivb, equal.
split.
- intros.
destruct (andb_prop _ _ H); clear H.
generalize (submap_2 Hm Hm' H0).
generalize (submap_2 Hm' Hm H1).
firstorder.
- intuition.
apply andb_true_intro; split; apply submap_1; unfold Submap; firstorder.
Qed.
End Elt.
Section Elt2.
Variable elt elt' : Type.
(** * [map] and [mapi] *)
Fixpoint map (f:elt -> elt') (m:t elt) : t elt' :=
match m with
| nil => nil
| (k,e)::m' => (k,f e) :: map f m'
end.
Fixpoint mapi (f: key -> elt -> elt') (m:t elt) : t elt' :=
match m with
| nil => nil
| (k,e)::m' => (k,f k e) :: mapi f m'
end.
(** Specification of [map] *)
Lemma map_spec (f:elt->elt')(m:t elt)(x:key) :
find x (map f m) = option_map f (find x m).
Proof.
induction m as [ | (k,e) m IH]; simpl; trivial.
dec; simpl; trivial.
Qed.
Lemma map_NoDup m (Hm : NoDupA (@eqk elt) m)(f:elt->elt') :
NoDupA (@eqk elt') (map f m).
Proof.
induction m; simpl; auto.
intros.
destruct a as (x',e').
inversion_clear Hm.
constructor; auto.
contradict H.
clear IHm H0.
induction m; simpl in *; auto.
inversion H.
destruct a; inversion H; auto.
Qed.
(** Specification of [mapi] *)
Lemma mapi_spec (f:key->elt->elt')(m:t elt)(x:key) :
exists y, X.eq y x /\ find x (mapi f m) = option_map (f y) (find x m).
Proof.
induction m as [ | (k,e) m IH]; simpl; trivial.
- now exists x.
- dec; simpl.
+ now exists k.
+ destruct IH as (y,(Hy,H)). now exists y.
Qed.
Lemma mapi_NoDup : forall m (Hm : NoDupA (@eqk elt) m)(f: key->elt->elt'),
NoDupA (@eqk elt') (mapi f m).
Proof.
induction m; simpl; auto.
intros.
destruct a as (x',e').
inversion_clear Hm; auto.
constructor; auto.
contradict H.
clear IHm H0.
induction m; simpl in *; auto.
inversion_clear H.
destruct a; inversion_clear H; auto.
Qed.
End Elt2.
Lemma mapfst_InA {elt}(m:t elt) x :
InA X.eq x (List.map fst m) <-> In x m.
Proof.
induction m as [| (k,e) m IH]; simpl; auto.
- split; inversion 1. inversion H0.
- rewrite InA_cons, In_cons. simpl. now rewrite IH.
Qed.
Lemma mapfst_NoDup {elt}(m:t elt) :
NoDupA X.eq (List.map fst m) <-> NoDupA eqk m.
Proof.
induction m as [| (k,e) m IH]; simpl.
- split; constructor.
- split; inversion_clear 1; constructor; try apply IH; trivial.
+ contradict H0. rewrite mapfst_InA. eapply In_alt'; eauto.
+ rewrite mapfst_InA. contradict H0. now apply In_alt'.
Qed.
Lemma filter_NoDup f (m:list key) :
NoDupA X.eq m -> NoDupA X.eq (List.filter f m).
Proof.
induction 1; simpl.
- constructor.
- destruct (f x); trivial. constructor; trivial.
contradict H. rewrite InA_alt in *. destruct H as (y,(Hy,H)).
exists y; split; trivial. now rewrite filter_In in H.
Qed.
Lemma NoDupA_unique_repr (l:list key) x y :
NoDupA X.eq l -> X.eq x y -> List.In x l -> List.In y l -> x = y.
Proof.
intros H E Hx Hy.
induction H; simpl in *.
- inversion Hx.
- intuition; subst; trivial.
elim H. apply InA_alt. now exists y.
elim H. apply InA_alt. now exists x.
Qed.
Section Elt3.
Variable elt elt' elt'' : Type.
Definition restrict (m:t elt)(k:key) :=
match find k m with
| None => true
| Some _ => false
end.
Definition domains (m:t elt)(m':t elt') :=
List.map fst m ++ List.filter (restrict m) (List.map fst m').
Lemma domains_InA m m' (Hm : NoDupA eqk m) x :
InA X.eq x (domains m m') <-> In x m \/ In x m'.
Proof.
unfold domains.
assert (Proper (X.eq==>eq) (restrict m)).
{ intros k k' Hk. unfold restrict. now rewrite (find_eq Hm Hk). }
rewrite InA_app_iff, filter_InA, !mapfst_InA; intuition.
unfold restrict.
destruct (find x m) eqn:F.
- left. apply find_spec in F; trivial. now exists e.
- now right.
Qed.
Lemma domains_NoDup m m' : NoDupA eqk m -> NoDupA eqk m' ->
NoDupA X.eq (domains m m').
Proof.
intros Hm Hm'. unfold domains.
apply NoDupA_app; auto with *.
- now apply mapfst_NoDup.
- now apply filter_NoDup, mapfst_NoDup.
- intros x.
rewrite mapfst_InA. intros (e,H).
apply find_spec in H; trivial.
rewrite InA_alt. intros (y,(Hy,H')).
rewrite (find_eq Hm Hy) in H.
rewrite filter_In in H'. destruct H' as (_,H').
unfold restrict in H'. now rewrite H in H'.
Qed.
Fixpoint fold_keys (f:key->option elt'') l :=
match l with
| nil => nil
| k::l =>
match f k with
| Some e => (k,e)::fold_keys f l
| None => fold_keys f l
end
end.
Lemma fold_keys_In f l x e :
List.In (x,e) (fold_keys f l) <-> List.In x l /\ f x = Some e.
Proof.
induction l as [|k l IH]; simpl.
- intuition.
- destruct (f k) eqn:F; simpl; rewrite IH; clear IH; intuition;
try left; congruence.
Qed.
Lemma fold_keys_NoDup f l :
NoDupA X.eq l -> NoDupA eqk (fold_keys f l).
Proof.
induction 1; simpl.
- constructor.
- destruct (f x); trivial.
constructor; trivial. contradict H.
apply InA_alt in H. destruct H as ((k,e'),(E,H)).
rewrite fold_keys_In in H.
apply InA_alt. exists k. now split.
Qed.
Variable f : key -> option elt -> option elt' -> option elt''.
Definition merge m m' : t elt'' :=
fold_keys (fun k => f k (find k m) (find k m')) (domains m m').
Lemma merge_NoDup m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m') :
NoDupA (@eqk elt'') (merge m m').
Proof.
now apply fold_keys_NoDup, domains_NoDup.
Qed.
Lemma merge_spec1 m (Hm:NoDupA eqk m) m' (Hm':NoDupA eqk m') x :
In x m \/ In x m' ->
exists y:key, X.eq y x /\
find x (merge m m') = f y (find x m) (find x m').
Proof.
assert (Hmm' : NoDupA eqk (merge m m')) by now apply merge_NoDup.
rewrite <- domains_InA; trivial.
rewrite InA_alt. intros (y,(Hy,H)).
exists y; split; [easy|].
rewrite (find_eq Hm Hy), (find_eq Hm' Hy).
destruct (f y (find y m) (find y m')) eqn:F.
- apply find_spec; trivial.
red. apply InA_alt. exists (y,e). split. now split.
unfold merge. apply fold_keys_In. now split.
- destruct (find x (merge m m')) eqn:F'; trivial.
rewrite <- F; clear F. symmetry.
apply find_spec in F'; trivial.
red in F'. rewrite InA_alt in F'.
destruct F' as ((y',e'),(E,F')).
unfold merge in F'; rewrite fold_keys_In in F'.
destruct F' as (H',F').
compute in E; destruct E as (Hy',<-).
replace y with y'; trivial.
apply (@NoDupA_unique_repr (domains m m')); auto.
now apply domains_NoDup.
now transitivity x.
Qed.
Lemma merge_spec2 m (Hm:NoDupA eqk m) m' (Hm':NoDupA eqk m') x :
In x (merge m m') -> In x m \/ In x m'.
Proof.
rewrite <- domains_InA; trivial.
intros (e,H). red in H. rewrite InA_alt in H. destruct H as ((k,e'),(E,H)).
unfold merge in H; rewrite fold_keys_In in H. destruct H as (H,_).
apply InA_alt. exists k. split; trivial. now destruct E.
Qed.
End Elt3.
End Raw.
Module Make (X: DecidableType) <: WS with Module E:=X.
Module Raw := Raw X.
Module E := X.
Definition key := E.t.
Definition eq_key {elt} := @Raw.PX.eqk elt.
Definition eq_key_elt {elt} := @Raw.PX.eqke elt.
Record t_ (elt:Type) := Mk
{this :> Raw.t elt;
nodup : NoDupA Raw.PX.eqk this}.
Definition t := t_.
Definition empty {elt} : t elt := Mk (Raw.empty_NoDup elt).
Section Elt.
Variable elt elt' elt'':Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
Definition find x m : option elt := Raw.find x m.(this).
Definition mem x m : bool := Raw.mem x m.(this).
Definition is_empty m : bool := Raw.is_empty m.(this).
Definition add x e m : t elt := Mk (Raw.add_NoDup m.(nodup) x e).
Definition remove x m : t elt := Mk (Raw.remove_NoDup m.(nodup) x).
Definition map f m : t elt' := Mk (Raw.map_NoDup m.(nodup) f).
Definition mapi (f:key->elt->elt') m : t elt' :=
Mk (Raw.mapi_NoDup m.(nodup) f).
Definition merge f m (m':t elt') : t elt'' :=
Mk (Raw.merge_NoDup f m.(nodup) m'.(nodup)).
Definition bindings m : list (key*elt) := Raw.bindings m.(this).
Definition cardinal m := length m.(this).
Definition fold {A}(f:key->elt->A->A) m (i:A) : A := Raw.fold f m.(this) i.
Definition equal cmp m m' : bool := Raw.equal cmp m.(this) m'.(this).
Definition MapsTo x e m : Prop := Raw.PX.MapsTo x e m.(this).
Definition In x m : Prop := Raw.PX.In x m.(this).
Definition Equal m m' := forall y, find y m = find y m'.
Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb cmp m m' : Prop := Raw.Equivb cmp m.(this) m'.(this).
Instance MapsTo_compat :
Proper (E.eq==>Logic.eq==>Logic.eq==>iff) MapsTo.
Proof.
intros x x' Hx e e' <- m m' <-. unfold MapsTo. now rewrite Hx.
Qed.
Lemma find_spec m : forall x e, find x m = Some e <-> MapsTo x e m.
Proof. exact (Raw.find_spec m.(nodup)). Qed.
Lemma mem_spec m : forall x, mem x m = true <-> In x m.
Proof. exact (Raw.mem_spec m.(nodup)). Qed.
Lemma empty_spec : forall x, find x empty = None.
Proof. exact (Raw.empty_spec _). Qed.
Lemma is_empty_spec m : is_empty m = true <-> (forall x, find x m = None).
Proof. exact (Raw.is_empty_spec m.(this)). Qed.
Lemma add_spec1 m : forall x e, find x (add x e m) = Some e.
Proof. exact (Raw.add_spec1 m.(this)). Qed.
Lemma add_spec2 m : forall x y e, ~E.eq x y -> find y (add x e m) = find y m.
Proof. exact (Raw.add_spec2 m.(this)). Qed.
Lemma remove_spec1 m : forall x, find x (remove x m) = None.
Proof. exact (Raw.remove_spec1 m.(nodup)). Qed.
Lemma remove_spec2 m : forall x y, ~E.eq x y -> find y (remove x m) = find y m.
Proof. exact (Raw.remove_spec2 m.(nodup)). Qed.
Lemma bindings_spec1 m : forall x e,
InA eq_key_elt (x,e) (bindings m) <-> MapsTo x e m.
Proof. exact (Raw.bindings_spec1 m.(this)). Qed.
Lemma bindings_spec2w m : NoDupA eq_key (bindings m).
Proof. exact (Raw.bindings_spec2w m.(nodup)). Qed.
Lemma cardinal_spec m : cardinal m = length (bindings m).
Proof. reflexivity. Qed.
Lemma fold_spec m : forall (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (bindings m) i.
Proof. exact (Raw.fold_spec m.(this)). Qed.
Lemma equal_spec m m' : forall cmp, equal cmp m m' = true <-> Equivb cmp m m'.
Proof. exact (Raw.equal_spec m.(nodup) m'.(nodup)). Qed.
End Elt.
Lemma map_spec {elt elt'} (f:elt->elt') m :
forall x, find x (map f m) = option_map f (find x m).
Proof. exact (Raw.map_spec f m.(this)). Qed.
Lemma mapi_spec {elt elt'} (f:key->elt->elt') m :
forall x, exists y,
E.eq y x /\ find x (mapi f m) = option_map (f y) (find x m).
Proof. exact (Raw.mapi_spec f m.(this)). Qed.
Lemma merge_spec1 {elt elt' elt''}
(f:key->option elt->option elt'->option elt'') m m' :
forall x,
In x m \/ In x m' ->
exists y, E.eq y x /\ find x (merge f m m') = f y (find x m) (find x m').
Proof. exact (Raw.merge_spec1 f m.(nodup) m'.(nodup)). Qed.
Lemma merge_spec2 {elt elt' elt''}
(f:key->option elt->option elt'->option elt'') m m' :
forall x,
In x (merge f m m') -> In x m \/ In x m'.
Proof. exact (Raw.merge_spec2 m.(nodup) m'.(nodup)). Qed.
End Make.
|