aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Logic/ProofIrrelevanceFacts.v
blob: 10d9dbcdafb73dc9f06c95bca13e7d15483c2db2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** This defines the functor that build consequences of proof-irrelevance *)

Require Export EqdepFacts.

Module Type ProofIrrelevance.

  Axiom proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2.

End ProofIrrelevance.

Module ProofIrrelevanceTheory (M:ProofIrrelevance).

  (** Proof-irrelevance implies uniqueness of reflexivity proofs *)

  Module Eq_rect_eq.
    Lemma eq_rect_eq :
      forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p),
        x = eq_rect p Q x p h.
    Proof.
      intros; rewrite M.proof_irrelevance with (p1:=h) (p2:=eq_refl p).
      reflexivity.
    Qed.
  End Eq_rect_eq.

  (** Export the theory of injective dependent elimination *)

  Module EqdepTheory := EqdepTheory(Eq_rect_eq).
  Export EqdepTheory.

  Scheme eq_indd := Induction for eq Sort Prop.

  (** We derive the irrelevance of the membership property for subsets *)

  Lemma subset_eq_compat :
    forall (U:Type) (P:U->Prop) (x y:U) (p:P x) (q:P y),
      x = y -> exist P x p = exist P y q.
  Proof.
    intros.
    rewrite M.proof_irrelevance with (p1:=q) (p2:=eq_rect x P p y H).
    elim H using eq_indd.
    reflexivity.
  Qed.

  Lemma subsetT_eq_compat :
    forall (U:Type) (P:U->Prop) (x y:U) (p:P x) (q:P y),
      x = y -> existT P x p = existT P y q.
  Proof.
    intros.
    rewrite M.proof_irrelevance with (p1:=q) (p2:=eq_rect x P p y H).
    elim H using eq_indd.
    reflexivity.
  Qed.

End ProofIrrelevanceTheory.