aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Logic/EqdepFacts.v
blob: af7fcb3fe2af09e4ec4ce7246ddbadc6f6dc78d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* File Eqdep.v created by Christine Paulin-Mohring in Coq V5.6, May 1992 *)
(* Further documentation and variants of eq_rect_eq by Hugo Herbelin,
   Apr 2003 *)
(* Abstraction with respect to the eq_rect_eq axiom and renaming to
   EqdepFacts.v by Hugo Herbelin, Mar 2006 *)

(** This file defines dependent equality and shows its equivalence with
    equality on dependent pairs (inhabiting sigma-types). It derives
    the consequence of axiomatizing the invariance by substitution of
    reflexive equality proofs and shows the equivalence between the 4
    following statements

    - Invariance by Substitution of Reflexive Equality Proofs.
    - Injectivity of Dependent Equality
    - Uniqueness of Identity Proofs
    - Uniqueness of Reflexive Identity Proofs
    - Streicher's Axiom K

  These statements are independent of the calculus of constructions [2].

  References:

  [1] T. Streicher, Semantical Investigations into Intensional Type Theory,
      Habilitationsschrift, LMU München, 1993.
  [2] M. Hofmann, T. Streicher, The groupoid interpretation of type theory,
      Proceedings of the meeting Twenty-five years of constructive
      type theory, Venice, Oxford University Press, 1998

Table of contents:

1. Definition of dependent equality and equivalence with equality of
   dependent pairs and with dependent pair of equalities

2. Eq_rect_eq <-> Eq_dep_eq <-> UIP <-> UIP_refl <-> K

3. Definition of the functor that builds properties of dependent
   equalities assuming axiom eq_rect_eq

*)

(************************************************************************)
(** * Definition of dependent equality and equivalence with equality of dependent pairs *)

Import EqNotations.

(* Set Universe Polymorphism. *)

Section Dependent_Equality.

  Variable U : Type.
  Variable P : U -> Type.

  (** Dependent equality *)

  Inductive eq_dep (p:U) (x:P p) : forall q:U, P q -> Prop :=
    eq_dep_intro : eq_dep p x p x.
  Hint Constructors eq_dep: core.

  Lemma eq_dep_refl : forall (p:U) (x:P p), eq_dep p x p x.
  Proof eq_dep_intro.

  Lemma eq_dep_sym :
    forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep q y p x.
  Proof.
    destruct 1; auto.
  Qed.
  Hint Immediate eq_dep_sym: core.

  Lemma eq_dep_trans :
    forall (p q r:U) (x:P p) (y:P q) (z:P r),
      eq_dep p x q y -> eq_dep q y r z -> eq_dep p x r z.
  Proof.
    destruct 1; auto.
  Qed.

  Scheme eq_indd := Induction for eq Sort Prop.

  (** Equivalent definition of dependent equality as a dependent pair of
      equalities *)

  Inductive eq_dep1 (p:U) (x:P p) (q:U) (y:P q) : Prop :=
    eq_dep1_intro : forall h:q = p, x = rew h in y -> eq_dep1 p x q y.

  Lemma eq_dep1_dep :
    forall (p:U) (x:P p) (q:U) (y:P q), eq_dep1 p x q y -> eq_dep p x q y.
  Proof.
    destruct 1 as (eq_qp, H).
    destruct eq_qp using eq_indd.
    rewrite H.
    apply eq_dep_intro.
  Qed.

  Lemma eq_dep_dep1 :
    forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y.
  Proof.
    destruct 1.
    apply eq_dep1_intro with (eq_refl p).
    simpl; trivial.
  Qed.

End Dependent_Equality.

Arguments eq_dep  [U P] p x q _.
Arguments eq_dep1 [U P] p x q y.

(** Dependent equality is equivalent to equality on dependent pairs *)

Lemma eq_sigT_eq_dep :
  forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
    existT P p x = existT P q y -> eq_dep p x q y.
Proof.
  intros.
  dependent rewrite H.
  apply eq_dep_intro.
Qed.

Notation eq_sigS_eq_dep := eq_sigT_eq_dep (compat "8.6"). (* Compatibility *)

Lemma eq_dep_eq_sigT :
  forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
    eq_dep p x q y -> existT P p x = existT P q y.
Proof.
  destruct 1; reflexivity.
Qed.

Lemma eq_sigT_iff_eq_dep :
  forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
    existT P p x = existT P q y <-> eq_dep p x q y.
Proof.
  split; auto using eq_sigT_eq_dep, eq_dep_eq_sigT.
Qed.

Notation equiv_eqex_eqdep := eq_sigT_iff_eq_dep (only parsing). (* Compat *)

Lemma eq_sig_eq_dep :
  forall (U:Type) (P:U -> Prop) (p q:U) (x:P p) (y:P q),
    exist P p x = exist P q y -> eq_dep p x q y.
Proof.
  intros.
  dependent rewrite H.
  apply eq_dep_intro.
Qed.

Lemma eq_dep_eq_sig :
  forall (U:Type) (P:U -> Prop) (p q:U) (x:P p) (y:P q),
    eq_dep p x q y -> exist P p x = exist P q y.
Proof.
  destruct 1; reflexivity.
Qed.

Lemma eq_sig_iff_eq_dep :
  forall (U:Type) (P:U -> Prop) (p q:U) (x:P p) (y:P q),
    exist P p x = exist P q y <-> eq_dep p x q y.
Proof.
  split; auto using eq_sig_eq_dep, eq_dep_eq_sig.
Qed.

(** Dependent equality is equivalent to a dependent pair of equalities *)

Set Implicit Arguments.

Lemma eq_sigT_sig_eq : forall X P (x1 x2:X) H1 H2, existT P x1 H1 = existT P x2 H2 <->
                                                   {H:x1=x2 | rew H in H1 = H2}.
Proof.
  intros; split; intro H.
  - change x2 with (projT1 (existT P x2 H2)).
    change H2 with (projT2 (existT P x2 H2)) at 5.
    destruct H. simpl.
    exists eq_refl.
    reflexivity.
  - destruct H as (->,<-).
    reflexivity.
Defined.

Lemma eq_sigT_fst :
  forall X P (x1 x2:X) H1 H2 (H:existT P x1 H1 = existT P x2 H2), x1 = x2.
Proof.
  intros.
  change x2 with (projT1 (existT P x2 H2)).
  destruct H.
  reflexivity.
Defined.

Lemma eq_sigT_snd :
  forall X P (x1 x2:X) H1 H2 (H:existT P x1 H1 = existT P x2 H2), rew (eq_sigT_fst H) in H1 = H2.
Proof.
  intros.
  unfold eq_sigT_fst.
  change x2 with (projT1 (existT P x2 H2)).
  change H2 with (projT2 (existT P x2 H2)) at 3.
  destruct H.
  reflexivity.
Defined.

Lemma eq_sig_fst :
  forall X P (x1 x2:X) H1 H2 (H:exist P x1 H1 = exist P x2 H2), x1 = x2.
Proof.
  intros.
  change x2 with (proj1_sig (exist P x2 H2)).
  destruct H.
  reflexivity.
Defined.

Lemma eq_sig_snd :
  forall X P (x1 x2:X) H1 H2 (H:exist P x1 H1 = exist P x2 H2), rew (eq_sig_fst H) in H1 = H2.
Proof.
  intros.
  unfold eq_sig_fst, eq_ind.
  change x2 with (proj1_sig (exist P x2 H2)).
  change H2 with (proj2_sig (exist P x2 H2)) at 3.
  destruct H.
  reflexivity.
Defined.

Unset Implicit Arguments.

(** Exported hints *)

Hint Resolve eq_dep_intro: core.
Hint Immediate eq_dep_sym: core.

(************************************************************************)
(** * Eq_rect_eq <-> Eq_dep_eq <-> UIP <-> UIP_refl <-> K          *)

Section Equivalences.

  Variable U:Type.

  (** Invariance by Substitution of Reflexive Equality Proofs *)

  Definition Eq_rect_eq_on (p : U) (Q : U -> Type) (x : Q p) :=
    forall (h : p = p), x = eq_rect p Q x p h.
  Definition Eq_rect_eq := forall p Q x, Eq_rect_eq_on p Q x.

  (** Injectivity of Dependent Equality *)

  Definition Eq_dep_eq_on (P : U -> Type) (p : U) (x : P p) :=
    forall (y : P p), eq_dep p x p y -> x = y.
  Definition Eq_dep_eq := forall P p x, Eq_dep_eq_on P p x.

  (** Uniqueness of Identity Proofs (UIP) *)

  Definition UIP_on_ (x y : U) (p1 : x = y) :=
    forall (p2 : x = y), p1 = p2.
  Definition UIP_ := forall x y p1, UIP_on_ x y p1.

  (** Uniqueness of Reflexive Identity Proofs *)

  Definition UIP_refl_on_ (x : U) :=
    forall (p : x = x), p = eq_refl x.
  Definition UIP_refl_ := forall x, UIP_refl_on_ x.

  (** Streicher's axiom K *)

  Definition Streicher_K_on_ (x : U) (P : x = x -> Prop) :=
    P (eq_refl x) -> forall p : x = x, P p.
  Definition Streicher_K_ := forall x P, Streicher_K_on_ x P.

  (** Injectivity of Dependent Equality is a consequence of *)
  (** Invariance by Substitution of Reflexive Equality Proof *)

  Lemma eq_rect_eq_on__eq_dep1_eq_on (p : U) (P : U -> Type) (y : P p) :
    Eq_rect_eq_on p P y -> forall (x : P p), eq_dep1 p x p y -> x = y.
  Proof.
    intro eq_rect_eq.
    simple destruct 1; intro.
    rewrite <- eq_rect_eq; auto.
  Qed.
  Lemma eq_rect_eq__eq_dep1_eq :
    Eq_rect_eq -> forall (P:U->Type) (p:U) (x y:P p), eq_dep1 p x p y -> x = y.
  Proof (fun eq_rect_eq P p y x =>
           @eq_rect_eq_on__eq_dep1_eq_on p P x (eq_rect_eq p P x) y).

  Lemma eq_rect_eq_on__eq_dep_eq_on (p : U) (P : U -> Type) (x : P p) :
    Eq_rect_eq_on p P x -> Eq_dep_eq_on P p x.
  Proof.
    intros eq_rect_eq; red; intros.
    symmetry; apply (eq_rect_eq_on__eq_dep1_eq_on _ _ _ eq_rect_eq).
    apply eq_dep_sym in H; apply eq_dep_dep1; trivial.
  Qed.
  Lemma eq_rect_eq__eq_dep_eq : Eq_rect_eq -> Eq_dep_eq.
  Proof (fun eq_rect_eq P p x y =>
           @eq_rect_eq_on__eq_dep_eq_on p P x (eq_rect_eq p P x) y).

  (** Uniqueness of Identity Proofs (UIP) is a consequence of *)
  (** Injectivity of Dependent Equality *)

  Lemma eq_dep_eq_on__UIP_on (x y : U) (p1 : x = y) :
    Eq_dep_eq_on (fun y => x = y) x eq_refl -> UIP_on_ x y p1.
  Proof.
    intro eq_dep_eq; red.
    elim p1 using eq_indd.
    intros; apply eq_dep_eq.
    elim p2 using eq_indd.
    apply eq_dep_intro.
  Qed.
  Lemma eq_dep_eq__UIP : Eq_dep_eq -> UIP_.
  Proof (fun eq_dep_eq x y p1 =>
           @eq_dep_eq_on__UIP_on x y p1 (eq_dep_eq _ _ _)).

  (** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)

  Lemma UIP_on__UIP_refl_on (x : U) :
    UIP_on_ x x eq_refl -> UIP_refl_on_ x.
  Proof.
    intro UIP; red; intros; symmetry; apply UIP.
  Qed.
  Lemma UIP__UIP_refl : UIP_ -> UIP_refl_.
  Proof (fun UIP x p =>
           @UIP_on__UIP_refl_on x (UIP x x eq_refl) p).

  (** Streicher's axiom K is a direct consequence of Uniqueness of
      Reflexive Identity Proofs *)

  Lemma UIP_refl_on__Streicher_K_on (x : U) (P : x = x -> Prop) :
    UIP_refl_on_ x -> Streicher_K_on_ x P.
  Proof.
    intro UIP_refl; red; intros; rewrite UIP_refl; assumption.
  Qed.
  Lemma UIP_refl__Streicher_K : UIP_refl_ -> Streicher_K_.
  Proof (fun UIP_refl x P =>
           @UIP_refl_on__Streicher_K_on x P (UIP_refl x)).

  (** We finally recover from K the Invariance by Substitution of
      Reflexive Equality Proofs *)

  Lemma Streicher_K_on__eq_rect_eq_on (p : U) (P : U -> Type) (x : P p) :
    Streicher_K_on_ p (fun h => x = rew -> [P] h in x)
    -> Eq_rect_eq_on p P x.
  Proof.
    intro Streicher_K; red; intros.
    apply Streicher_K.
    reflexivity.
  Qed.
  Lemma Streicher_K__eq_rect_eq : Streicher_K_ -> Eq_rect_eq.
  Proof (fun Streicher_K p P x =>
           @Streicher_K_on__eq_rect_eq_on p P x (Streicher_K p _)).

(** Remark: It is reasonable to think that [eq_rect_eq] is strictly
    stronger than [eq_rec_eq] (which is [eq_rect_eq] restricted on [Set]):

   [Definition Eq_rec_eq :=
      forall (P:U -> Set) (p:U) (x:P p) (h:p = p), x = eq_rec p P x p h.]

    Typically, [eq_rect_eq] allows proving UIP and Streicher's K what
    does not seem possible with [eq_rec_eq]. In particular, the proof of [UIP]
    requires to use [eq_rect_eq] on [fun y -> x=y] which is in [Type] but not
    in [Set].
*)

End Equivalences.

(** UIP_refl is downward closed (a short proof of the key lemma of Voevodsky's
    proof of inclusion of h-level n into h-level n+1; see hlevelntosn
    in https://github.com/vladimirias/Foundations.git). *)

Theorem UIP_shift_on (X : Type) (x : X) :
  UIP_refl_on_ X x -> forall y : x = x, UIP_refl_on_ (x = x) y.
Proof.
  intros UIP_refl y.
  rewrite (UIP_refl y).
  intros z.
  assert (UIP:forall y' y'' : x = x, y' = y'').
  { intros. apply eq_trans with (eq_refl x). apply UIP_refl.
    symmetry. apply UIP_refl. }
  transitivity (eq_trans (eq_trans (UIP (eq_refl x) (eq_refl x)) z)
                         (eq_sym (UIP (eq_refl x) (eq_refl x)))).
  - destruct z. destruct (UIP _ _). reflexivity.
  - change
      (match eq_refl x as y' in _ = x' return y' = y' -> Prop with
       | eq_refl => fun z => z = (eq_refl (eq_refl x))
       end (eq_trans (eq_trans (UIP (eq_refl x) (eq_refl x)) z)
                     (eq_sym (UIP (eq_refl x) (eq_refl x))))).
    destruct z. destruct (UIP _ _). reflexivity.
Qed.
Theorem UIP_shift : forall U, UIP_refl_ U -> forall x:U, UIP_refl_ (x = x).
Proof (fun U UIP_refl x =>
         @UIP_shift_on U x (UIP_refl x)).

Section Corollaries.

  Variable U:Type.

  (** UIP implies the injectivity of equality on dependent pairs in Type *)


 Definition Inj_dep_pair_on (P : U -> Type) (p : U) (x : P p) :=
   forall (y : P p), existT P p x = existT P p y -> x = y.
 Definition Inj_dep_pair := forall P p x, Inj_dep_pair_on P p x.

 Lemma eq_dep_eq_on__inj_pair2_on (P : U -> Type) (p : U) (x : P p) :
   Eq_dep_eq_on U P p x -> Inj_dep_pair_on P p x.
 Proof.
   intro eq_dep_eq; red; intros.
   apply eq_dep_eq.
   apply eq_sigT_eq_dep.
   assumption.
 Qed.
 Lemma eq_dep_eq__inj_pair2 : Eq_dep_eq U -> Inj_dep_pair.
 Proof (fun eq_dep_eq P p x =>
          @eq_dep_eq_on__inj_pair2_on P p x (eq_dep_eq P p x)).

End Corollaries.

Notation Inj_dep_pairS := Inj_dep_pair.
Notation Inj_dep_pairT := Inj_dep_pair.
Notation eq_dep_eq__inj_pairT2 := eq_dep_eq__inj_pair2.


(************************************************************************)
(** * Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq *)

Module Type EqdepElimination.

  Axiom eq_rect_eq :
    forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p),
      x = eq_rect p Q x p h.

End EqdepElimination.

Module EqdepTheory (M:EqdepElimination).

  Section Axioms.

    Variable U:Type.

(** Invariance by Substitution of Reflexive Equality Proofs *)

Lemma eq_rect_eq :
  forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
Proof M.eq_rect_eq U.

Lemma eq_rec_eq :
  forall (p:U) (Q:U -> Set) (x:Q p) (h:p = p), x = eq_rec p Q x p h.
Proof (fun p Q => M.eq_rect_eq U p Q).

(** Injectivity of Dependent Equality *)

Lemma eq_dep_eq : forall (P:U->Type) (p:U) (x y:P p), eq_dep p x p y -> x = y.
Proof (eq_rect_eq__eq_dep_eq U eq_rect_eq).

(** Uniqueness of Identity Proofs (UIP) is a consequence of *)
(** Injectivity of Dependent Equality *)

Lemma UIP : forall (x y:U) (p1 p2:x = y), p1 = p2.
Proof (eq_dep_eq__UIP U eq_dep_eq).

(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)

Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x.
Proof (UIP__UIP_refl U UIP).

(** Streicher's axiom K is a direct consequence of Uniqueness of
    Reflexive Identity Proofs *)

Lemma Streicher_K :
  forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof (UIP_refl__Streicher_K U UIP_refl).

End Axioms.

(** UIP implies the injectivity of equality on dependent pairs in Type *)

Lemma inj_pair2 :
 forall (U:Type) (P:U -> Type) (p:U) (x y:P p),
   existT P p x = existT P p y -> x = y.
Proof (fun U => eq_dep_eq__inj_pair2 U (eq_dep_eq U)).

Notation inj_pairT2 := inj_pair2.

End EqdepTheory.

(** Basic facts about eq_dep *)

Lemma f_eq_dep :
  forall U (P:U->Type) R p q x y (f:forall p, P p -> R p),
    eq_dep p x q y -> eq_dep p (f p x) q (f q y).
Proof.
intros * []. reflexivity.
Qed.

Lemma eq_dep_non_dep :
  forall U P p q x y, @eq_dep U (fun _ => P) p x q y -> x = y.
Proof.
intros * []. reflexivity.
Qed.

Lemma f_eq_dep_non_dep :
  forall U (P:U->Type) R p q x y (f:forall p, P p -> R),
    eq_dep p x q y -> f p x = f q y.
Proof.
intros * []. reflexivity.
Qed.

Arguments eq_dep  U P p x q _ : clear implicits.
Arguments eq_dep1 U P p x q y : clear implicits.