1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(** This file defines dependent equality and shows its equivalence with
equality on dependent pairs (inhabiting sigma-types). It axiomatizes
the invariance by substitution of reflexive equality proofs and
shows the equivalence between the 4 following statements
- Invariance by Substitution of Reflexive Equality Proofs.
- Injectivity of Dependent Equality
- Uniqueness of Identity Proofs
- Uniqueness of Reflexive Identity Proofs
- Streicher's Axiom K
These statements are independent of the calculus of constructions [2].
References:
[1] T. Streicher, Semantical Investigations into Intensional Type Theory,
Habilitationsschrift, LMU München, 1993.
[2] M. Hofmann, T. Streicher, The groupoid interpretation of type theory,
Proceedings of the meeting Twenty-five years of constructive
type theory, Venice, Oxford University Press, 1998
*)
Section Dependent_Equality.
Variable U : Type.
Variable P : U -> Type.
(** Dependent equality *)
Inductive eq_dep (p:U) (x:P p) : forall q:U, P q -> Prop :=
eq_dep_intro : eq_dep p x p x.
Hint Constructors eq_dep: core v62.
Lemma eq_dep_sym :
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep q y p x.
Proof.
destruct 1; auto.
Qed.
Hint Immediate eq_dep_sym: core v62.
Lemma eq_dep_trans :
forall (p q r:U) (x:P p) (y:P q) (z:P r),
eq_dep p x q y -> eq_dep q y r z -> eq_dep p x r z.
Proof.
destruct 1; auto.
Qed.
Scheme eq_indd := Induction for eq Sort Prop.
Inductive eq_dep1 (p:U) (x:P p) (q:U) (y:P q) : Prop :=
eq_dep1_intro : forall h:q = p, x = eq_rect q P y p h -> eq_dep1 p x q y.
Lemma eq_dep1_dep :
forall (p:U) (x:P p) (q:U) (y:P q), eq_dep1 p x q y -> eq_dep p x q y.
Proof.
destruct 1 as (eq_qp, H).
destruct eq_qp using eq_indd.
rewrite H.
apply eq_dep_intro.
Qed.
Lemma eq_dep_dep1 :
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y.
Proof.
destruct 1.
apply eq_dep1_intro with (refl_equal p).
simpl in |- *; trivial.
Qed.
(** Invariance by Substitution of Reflexive Equality Proofs *)
Axiom eq_rect_eq :
forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
(** Injectivity of Dependent Equality is a consequence of *)
(** Invariance by Substitution of Reflexive Equality Proof *)
Lemma eq_dep1_eq : forall (p:U) (x y:P p), eq_dep1 p x p y -> x = y.
Proof.
simple destruct 1; intro.
rewrite <- eq_rect_eq; auto.
Qed.
Lemma eq_dep_eq : forall (p:U) (x y:P p), eq_dep p x p y -> x = y.
Proof.
intros; apply eq_dep1_eq; apply eq_dep_dep1; trivial.
Qed.
End Dependent_Equality.
(** Uniqueness of Identity Proofs (UIP) is a consequence of *)
(** Injectivity of Dependent Equality *)
Lemma UIP : forall (U:Type) (x y:U) (p1 p2:x = y), p1 = p2.
Proof.
intros; apply eq_dep_eq with (P := fun y => x = y).
elim p2 using eq_indd.
elim p1 using eq_indd.
apply eq_dep_intro.
Qed.
(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)
Lemma UIP_refl : forall (U:Type) (x:U) (p:x = x), p = refl_equal x.
Proof.
intros; apply UIP.
Qed.
(** Streicher axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs *)
Lemma Streicher_K :
forall (U:Type) (x:U) (P:x = x -> Prop),
P (refl_equal x) -> forall p:x = x, P p.
Proof.
intros; rewrite UIP_refl; assumption.
Qed.
(** We finally recover eq_rec_eq (alternatively eq_rect_eq) from K *)
Lemma eq_rec_eq :
forall (U:Type) (P:U -> Set) (p:U) (x:P p) (h:p = p), x = eq_rec p P x p h.
Proof.
intros.
apply Streicher_K with (p := h).
reflexivity.
Qed.
(** Dependent equality is equivalent to equality on dependent pairs *)
Lemma equiv_eqex_eqdep :
forall (U:Set) (P:U -> Set) (p q:U) (x:P p) (y:P q),
existS P p x = existS P q y <-> eq_dep U P p x q y.
Proof.
split.
(* -> *)
intro H.
change p with (projS1 (existS P p x)) in |- *.
change x at 2 with (projS2 (existS P p x)) in |- *.
rewrite H.
apply eq_dep_intro.
(* <- *)
destruct 1; reflexivity.
Qed.
(** UIP implies the injectivity of equality on dependent pairs *)
Lemma inj_pair2 :
forall (U:Set) (P:U -> Set) (p:U) (x y:P p),
existS P p x = existS P p y -> x = y.
Proof.
intros.
apply (eq_dep_eq U P).
generalize (equiv_eqex_eqdep U P p p x y).
simple induction 1.
intros.
auto.
Qed.
(** UIP implies the injectivity of equality on dependent pairs *)
Lemma inj_pairT2 :
forall (U:Type) (P:U -> Type) (p:U) (x y:P p),
existT P p x = existT P p y -> x = y.
Proof.
intros.
apply (eq_dep_eq U P).
change p at 1 with (projT1 (existT P p x)) in |- *.
change x at 2 with (projT2 (existT P p x)) in |- *.
rewrite H.
apply eq_dep_intro.
Qed.
(** The main results to be exported *)
Hint Resolve eq_dep_intro eq_dep_eq: core v62.
Hint Immediate eq_dep_sym: core v62.
Hint Resolve inj_pair2 inj_pairT2: core.
|