1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id:$ i*)
(** This module proves the constructive description schema, which
infers the sigma-existence (i.e., [Set]-existence) of a witness to a
predicate from the regular existence (i.e., [Prop]-existence). One
requires that the underlying set is countable and that the predicate
is decidable. *)
(** Coq does not allow case analysis on sort [Set] when the goal is in
[Prop]. Therefore, one cannot eliminate [exists n, P n] in order to
show [{n : nat | P n}]. However, one can perform a recursion on an
inductive predicate in sort [Prop] so that the returning type of the
recursion is in [Set]. This trick is described in Coq'Art book, Sect.
14.2.3 and 15.4. In particular, this trick is used in the proof of
[Fix_F] in the module Coq.Init.Wf. There, recursion is done on an
inductive predicate [Acc] and the resulting type is in [Type].
The predicate [Acc] delineates elements that are accessible via a
given relation [R]. An element is accessible if there are no infinite
[R]-descending chains starting from it.
To use [Fix_F], we define a relation R and prove that if [exists n,
P n] then 0 is accessible with respect to R. Then, by induction on the
definition of [Acc R 0], we show [{n : nat | P n}]. *)
(** Based on ideas from Benjamin Werner and Jean-François Monin *)
(** Contributed by Yevgeniy Makarov *)
Require Import Arith.
Section ConstructiveIndefiniteDescription.
Variable P : nat -> Prop.
Hypothesis P_decidable : forall x : nat, {P x} + {~ P x}.
(** To find a witness of [P] constructively, we define an algorithm
that tries P on all natural numbers starting from 0 and going up. The
relation [R] describes the connection between the two successive
numbers we try. Namely, [y] is [R]-less then [x] if we try [y] after
[x], i.e., [y = S x] and [P x] is false. Then the absence of an
infinite [R]-descending chain from 0 is equivalent to the termination
of our searching algorithm. *)
Let R (x y : nat) : Prop := x = S y /\ ~ P y.
Notation Local "'acc' x" := (Acc R x) (at level 10).
Lemma P_implies_acc : forall x : nat, P x -> acc x.
Proof.
intros x H. constructor.
intros y [_ not_Px]. absurd (P x); assumption.
Qed.
Lemma P_eventually_implies_acc : forall (x : nat) (n : nat), P (n + x) -> acc x.
Proof.
intros x n; generalize x; clear x; induction n as [|n IH]; simpl.
apply P_implies_acc.
intros x H. constructor. intros y [fxy _].
apply IH. rewrite fxy.
replace (n + S x) with (S (n + x)); auto with arith.
Defined.
Corollary P_eventually_implies_acc_ex : (exists n : nat, P n) -> acc 0.
Proof.
intros H; elim H. intros x Px. apply P_eventually_implies_acc with (n := x).
replace (x + 0) with x; auto with arith.
Defined.
(** In the following statement, we use the trick with recursion on
[Acc]. This is also where decidability of [P] is used. *)
Theorem acc_implies_P_eventually : acc 0 -> {n : nat | P n}.
Proof.
intros Acc_0. pattern 0. apply Fix_F with (R := R); [| assumption].
clear Acc_0; intros x IH.
destruct (P_decidable x) as [Px | not_Px].
exists x; simpl; assumption.
set (y := S x).
assert (Ryx : R y x). unfold R; split; auto.
destruct (IH y Ryx) as [n Hn].
exists n; assumption.
Defined.
Theorem constructive_indefinite_description_nat : (exists n : nat, P n) -> {n : nat | P n}.
Proof.
intros H; apply acc_implies_P_eventually.
apply P_eventually_implies_acc_ex; assumption.
Defined.
End ConstructiveIndefiniteDescription.
Section ConstructiveEpsilon.
(** For the current purpose, we say that a set [A] is countable if
there are functions [f : A -> nat] and [g : nat -> A] such that [g] is
a left inverse of [f]. *)
Variable A : Set.
Variable f : A -> nat.
Variable g : nat -> A.
Hypothesis gof_eq_id : forall x : A, g (f x) = x.
Variable P : A -> Prop.
Hypothesis P_decidable : forall x : A, {P x} + {~ P x}.
Definition P' (x : nat) : Prop := P (g x).
Lemma P'_decidable : forall n : nat, {P' n} + {~ P' n}.
Proof.
intro n; unfold P'; destruct (P_decidable (g n)); auto.
Defined.
Lemma constructive_indefinite_description : (exists x : A, P x) -> {x : A | P x}.
Proof.
intro H. assert (H1 : exists n : nat, P' n).
destruct H as [x Hx]. exists (f x); unfold P'. rewrite gof_eq_id; assumption.
apply (constructive_indefinite_description_nat P' P'_decidable) in H1.
destruct H1 as [n Hn]. exists (g n); unfold P' in Hn; assumption.
Defined.
Lemma constructive_definite_description : (exists! x : A, P x) -> {x : A | P x}.
Proof.
intros; apply constructive_indefinite_description; firstorder.
Defined.
Definition constructive_epsilon (E : exists x : A, P x) : A
:= proj1_sig (constructive_indefinite_description E).
Definition constructive_epsilon_spec (E : (exists x, P x)) : P (constructive_epsilon E)
:= proj2_sig (constructive_indefinite_description E).
End ConstructiveEpsilon.
|