1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** This file provides classical logic and functional choice; this
especially provides both indefinite descriptions and choice functions
but this is weaker than providing epsilon operator and classical logic
as the indefinite descriptions provided by the axiom of choice can
be used only in a propositional context (especially, they cannot
be used to build choice functions outside the scope of a theorem
proof) *)
(** This file extends ClassicalUniqueChoice.v with full choice.
As ClassicalUniqueChoice.v, it implies the double-negation of
excluded-middle in [Set] and leads to a classical world populated
with non computable functions. Especially it conflicts with the
impredicativity of [Set], knowing that [true<>false] in [Set]. *)
Require Export ClassicalUniqueChoice.
Require Export RelationalChoice.
Require Import ChoiceFacts.
Set Implicit Arguments.
Definition subset (U:Type) (P Q:U->Prop) : Prop := forall x, P x -> Q x.
Theorem singleton_choice :
forall (A : Type) (P : A->Prop),
(exists x : A, P x) -> exists P' : A->Prop, subset P' P /\ exists! x, P' x.
Proof.
intros A P H.
destruct (relational_choice unit A (fun _ => P) (fun _ => H)) as (R',(Hsub,HR')).
exists (R' tt); firstorder.
Qed.
Theorem choice :
forall (A B : Type) (R : A->B->Prop),
(forall x : A, exists y : B, R x y) ->
exists f : A->B, (forall x : A, R x (f x)).
Proof.
intros A B.
apply description_rel_choice_imp_funct_choice.
exact (unique_choice A B).
exact (relational_choice A B).
Qed.
|