1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: ChoiceFacts.v 12363 2009-09-28 15:04:07Z letouzey $ i*)
(** Some facts and definitions concerning choice and description in
intuitionistic logic.
We investigate the relations between the following choice and
description principles
- AC_rel = relational form of the (non extensional) axiom of choice
(a "set-theoretic" axiom of choice)
- AC_fun = functional form of the (non extensional) axiom of choice
(a "type-theoretic" axiom of choice)
- DC_fun = functional form of the dependent axiom of choice
- ACw_fun = functional form of the countable axiom of choice
- AC! = functional relation reification
(known as axiom of unique choice in topos theory,
sometimes called principle of definite description in
the context of constructive type theory)
- GAC_rel = guarded relational form of the (non extensional) axiom of choice
- GAC_fun = guarded functional form of the (non extensional) axiom of choice
- GAC! = guarded functional relation reification
- OAC_rel = "omniscient" relational form of the (non extensional) axiom of choice
- OAC_fun = "omniscient" functional form of the (non extensional) axiom of choice
(called AC* in Bell [[Bell]])
- OAC!
- ID_iota = intuitionistic definite description
- ID_epsilon = intuitionistic indefinite description
- D_iota = (weakly classical) definite description principle
- D_epsilon = (weakly classical) indefinite description principle
- PI = proof irrelevance
- IGP = independence of general premises
(an unconstrained generalisation of the constructive principle of
independence of premises)
- Drinker = drinker's paradox (small form)
(called Ex in Bell [[Bell]])
We let also
IPL_2 = 2nd-order impredicative minimal predicate logic (with ex. quant.)
IPL^2 = 2nd-order functional minimal predicate logic (with ex. quant.)
IPL_2^2 = 2nd-order impredicative, 2nd-order functional minimal pred. logic (with ex. quant.)
with no prerequisite on the non-emptyness of domains
Table of contents
1. Definitions
2. IPL_2^2 |- AC_rel + AC! = AC_fun
3.1. typed IPL_2 + Sigma-types + PI |- AC_rel = GAC_rel and IPL_2 |- AC_rel + IGP -> GAC_rel and IPL_2 |- GAC_rel = OAC_rel
3.2. IPL^2 |- AC_fun + IGP = GAC_fun = OAC_fun = AC_fun + Drinker
3.3. D_iota -> ID_iota and D_epsilon <-> ID_epsilon + Drinker
4. Derivability of choice for decidable relations with well-ordered codomain
5. Equivalence of choices on dependent or non dependent functional types
6. Non contradiction of constructive descriptions wrt functional choices
7. Definite description transports classical logic to the computational world
8. Choice -> Dependent choice -> Countable choice
References:
[[Bell]] John L. Bell, Choice principles in intuitionistic set theory,
unpublished.
[[Bell93]] John L. Bell, Hilbert's Epsilon Operator in Intuitionistic
Type Theories, Mathematical Logic Quarterly, volume 39, 1993.
[Carlström05] Jesper Carlström, Interpreting descriptions in
intentional type theory, Journal of Symbolic Logic 70(2):488-514, 2005.
*)
Set Implicit Arguments.
(**********************************************************************)
(** * Definitions *)
(** Choice, reification and description schemes *)
Section ChoiceSchemes.
Variables A B :Type.
Variable P:A->Prop.
Variable R:A->B->Prop.
(** ** Constructive choice and description *)
(** AC_rel *)
Definition RelationalChoice_on :=
forall R:A->B->Prop,
(forall x : A, exists y : B, R x y) ->
(exists R' : A->B->Prop, subrelation R' R /\ forall x, exists! y, R' x y).
(** AC_fun *)
Definition FunctionalChoice_on :=
forall R:A->B->Prop,
(forall x : A, exists y : B, R x y) ->
(exists f : A->B, forall x : A, R x (f x)).
(** DC_fun *)
Definition FunctionalDependentChoice_on :=
forall (R:A->A->Prop),
(forall x, exists y, R x y) -> forall x0,
(exists f : nat -> A, f 0 = x0 /\ forall n, R (f n) (f (S n))).
(** ACw_fun *)
Definition FunctionalCountableChoice_on :=
forall (R:nat->A->Prop),
(forall n, exists y, R n y) ->
(exists f : nat -> A, forall n, R n (f n)).
(** AC! or Functional Relation Reification (known as Axiom of Unique Choice
in topos theory; also called principle of definite description *)
Definition FunctionalRelReification_on :=
forall R:A->B->Prop,
(forall x : A, exists! y : B, R x y) ->
(exists f : A->B, forall x : A, R x (f x)).
(** ID_epsilon (constructive version of indefinite description;
combined with proof-irrelevance, it may be connected to
Carlström's type theory with a constructive indefinite description
operator) *)
Definition ConstructiveIndefiniteDescription_on :=
forall P:A->Prop,
(exists x, P x) -> { x:A | P x }.
(** ID_iota (constructive version of definite description; combined
with proof-irrelevance, it may be connected to Carlström's and
Stenlund's type theory with a constructive definite description
operator) *)
Definition ConstructiveDefiniteDescription_on :=
forall P:A->Prop,
(exists! x, P x) -> { x:A | P x }.
(** ** Weakly classical choice and description *)
(** GAC_rel *)
Definition GuardedRelationalChoice_on :=
forall P : A->Prop, forall R : A->B->Prop,
(forall x : A, P x -> exists y : B, R x y) ->
(exists R' : A->B->Prop,
subrelation R' R /\ forall x, P x -> exists! y, R' x y).
(** GAC_fun *)
Definition GuardedFunctionalChoice_on :=
forall P : A->Prop, forall R : A->B->Prop,
inhabited B ->
(forall x : A, P x -> exists y : B, R x y) ->
(exists f : A->B, forall x, P x -> R x (f x)).
(** GFR_fun *)
Definition GuardedFunctionalRelReification_on :=
forall P : A->Prop, forall R : A->B->Prop,
inhabited B ->
(forall x : A, P x -> exists! y : B, R x y) ->
(exists f : A->B, forall x : A, P x -> R x (f x)).
(** OAC_rel *)
Definition OmniscientRelationalChoice_on :=
forall R : A->B->Prop,
exists R' : A->B->Prop,
subrelation R' R /\ forall x : A, (exists y : B, R x y) -> exists! y, R' x y.
(** OAC_fun *)
Definition OmniscientFunctionalChoice_on :=
forall R : A->B->Prop,
inhabited B ->
exists f : A->B, forall x : A, (exists y : B, R x y) -> R x (f x).
(** D_epsilon *)
Definition EpsilonStatement_on :=
forall P:A->Prop,
inhabited A -> { x:A | (exists x, P x) -> P x }.
(** D_iota *)
Definition IotaStatement_on :=
forall P:A->Prop,
inhabited A -> { x:A | (exists! x, P x) -> P x }.
End ChoiceSchemes.
(** Generalized schemes *)
Notation RelationalChoice :=
(forall A B, RelationalChoice_on A B).
Notation FunctionalChoice :=
(forall A B, FunctionalChoice_on A B).
Definition FunctionalDependentChoice :=
(forall A, FunctionalDependentChoice_on A).
Definition FunctionalCountableChoice :=
(forall A, FunctionalCountableChoice_on A).
Notation FunctionalChoiceOnInhabitedSet :=
(forall A B, inhabited B -> FunctionalChoice_on A B).
Notation FunctionalRelReification :=
(forall A B, FunctionalRelReification_on A B).
Notation GuardedRelationalChoice :=
(forall A B, GuardedRelationalChoice_on A B).
Notation GuardedFunctionalChoice :=
(forall A B, GuardedFunctionalChoice_on A B).
Notation GuardedFunctionalRelReification :=
(forall A B, GuardedFunctionalRelReification_on A B).
Notation OmniscientRelationalChoice :=
(forall A B, OmniscientRelationalChoice_on A B).
Notation OmniscientFunctionalChoice :=
(forall A B, OmniscientFunctionalChoice_on A B).
Notation ConstructiveDefiniteDescription :=
(forall A, ConstructiveDefiniteDescription_on A).
Notation ConstructiveIndefiniteDescription :=
(forall A, ConstructiveIndefiniteDescription_on A).
Notation IotaStatement :=
(forall A, IotaStatement_on A).
Notation EpsilonStatement :=
(forall A, EpsilonStatement_on A).
(** Subclassical schemes *)
Definition ProofIrrelevance :=
forall (A:Prop) (a1 a2:A), a1 = a2.
Definition IndependenceOfGeneralPremises :=
forall (A:Type) (P:A -> Prop) (Q:Prop),
inhabited A ->
(Q -> exists x, P x) -> exists x, Q -> P x.
Definition SmallDrinker'sParadox :=
forall (A:Type) (P:A -> Prop), inhabited A ->
exists x, (exists x, P x) -> P x.
(**********************************************************************)
(** * AC_rel + AC! = AC_fun
We show that the functional formulation of the axiom of Choice
(usual formulation in type theory) is equivalent to its relational
formulation (only formulation of set theory) + functional relation
reification (aka axiom of unique choice, or, principle of (parametric)
definite descriptions) *)
(** This shows that the axiom of choice can be assumed (under its
relational formulation) without known inconsistency with classical logic,
though functional relation reification conflicts with classical logic *)
Lemma description_rel_choice_imp_funct_choice :
forall A B : Type,
FunctionalRelReification_on A B -> RelationalChoice_on A B -> FunctionalChoice_on A B.
Proof.
intros A B Descr RelCh R H.
destruct (RelCh R H) as (R',(HR'R,H0)).
destruct (Descr R') as (f,Hf).
firstorder.
exists f; intro x.
destruct (H0 x) as (y,(HR'xy,Huniq)).
rewrite <- (Huniq (f x) (Hf x)).
apply HR'R; assumption.
Qed.
Lemma funct_choice_imp_rel_choice :
forall A B, FunctionalChoice_on A B -> RelationalChoice_on A B.
Proof.
intros A B FunCh R H.
destruct (FunCh R H) as (f,H0).
exists (fun x y => f x = y).
split.
intros x y Heq; rewrite <- Heq; trivial.
intro x; exists (f x); split.
reflexivity.
trivial.
Qed.
Lemma funct_choice_imp_description :
forall A B, FunctionalChoice_on A B -> FunctionalRelReification_on A B.
Proof.
intros A B FunCh R H.
destruct (FunCh R) as [f H0].
(* 1 *)
intro x.
destruct (H x) as (y,(HRxy,_)).
exists y; exact HRxy.
(* 2 *)
exists f; exact H0.
Qed.
Corollary FunChoice_Equiv_RelChoice_and_ParamDefinDescr :
forall A B, FunctionalChoice_on A B <->
RelationalChoice_on A B /\ FunctionalRelReification_on A B.
Proof.
intros A B; split.
intro H; split;
[ exact (funct_choice_imp_rel_choice H)
| exact (funct_choice_imp_description H) ].
intros [H H0]; exact (description_rel_choice_imp_funct_choice H0 H).
Qed.
(**********************************************************************)
(** * Connection between the guarded, non guarded and omniscient choices *)
(** We show that the guarded formulations of the axiom of choice
are equivalent to their "omniscient" variant and comes from the non guarded
formulation in presence either of the independance of general premises
or subset types (themselves derivable from subtypes thanks to proof-
irrelevance) *)
(**********************************************************************)
(** ** AC_rel + PI -> GAC_rel and AC_rel + IGP -> GAC_rel and GAC_rel = OAC_rel *)
Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice :
RelationalChoice -> ProofIrrelevance -> GuardedRelationalChoice.
Proof.
intros rel_choice proof_irrel.
red in |- *; intros A B P R H.
destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as (R',(HR'R,H0)).
intros (x,HPx).
destruct (H x HPx) as (y,HRxy).
exists y; exact HRxy.
set (R'' := fun (x:A) (y:B) => exists H : P x, R' (existT P x H) y).
exists R''; split.
intros x y (HPx,HR'xy).
change x with (projT1 (existT P x HPx)); apply HR'R; exact HR'xy.
intros x HPx.
destruct (H0 (existT P x HPx)) as (y,(HR'xy,Huniq)).
exists y; split. exists HPx; exact HR'xy.
intros y' (H'Px,HR'xy').
apply Huniq.
rewrite proof_irrel with (a1 := HPx) (a2 := H'Px); exact HR'xy'.
Qed.
Lemma rel_choice_indep_of_general_premises_imp_guarded_rel_choice :
forall A B, inhabited B -> RelationalChoice_on A B ->
IndependenceOfGeneralPremises -> GuardedRelationalChoice_on A B.
Proof.
intros A B Inh AC_rel IndPrem P R H.
destruct (AC_rel (fun x y => P x -> R x y)) as (R',(HR'R,H0)).
intro x. apply IndPrem. exact Inh. intro Hx.
apply H; assumption.
exists (fun x y => P x /\ R' x y).
firstorder.
Qed.
Lemma guarded_rel_choice_imp_rel_choice :
forall A B, GuardedRelationalChoice_on A B -> RelationalChoice_on A B.
Proof.
intros A B GAC_rel R H.
destruct (GAC_rel (fun _ => True) R) as (R',(HR'R,H0)).
firstorder.
exists R'; firstorder.
Qed.
Lemma subset_types_imp_guarded_rel_choice_iff_rel_choice :
ProofIrrelevance -> (GuardedRelationalChoice <-> RelationalChoice).
Proof.
auto decomp using
guarded_rel_choice_imp_rel_choice,
rel_choice_and_proof_irrel_imp_guarded_rel_choice.
Qed.
(** OAC_rel = GAC_rel *)
Corollary guarded_iff_omniscient_rel_choice :
GuardedRelationalChoice <-> OmniscientRelationalChoice.
Proof.
split.
intros GAC_rel A B R.
apply (GAC_rel A B (fun x => exists y, R x y) R); auto.
intros OAC_rel A B P R H.
destruct (OAC_rel A B R) as (f,Hf); exists f; firstorder.
Qed.
(**********************************************************************)
(** ** AC_fun + IGP = GAC_fun = OAC_fun = AC_fun + Drinker *)
(** AC_fun + IGP = GAC_fun *)
Lemma guarded_fun_choice_imp_indep_of_general_premises :
GuardedFunctionalChoice -> IndependenceOfGeneralPremises.
Proof.
intros GAC_fun A P Q Inh H.
destruct (GAC_fun unit A (fun _ => Q) (fun _ => P) Inh) as (f,Hf).
tauto.
exists (f tt); auto.
Qed.
Lemma guarded_fun_choice_imp_fun_choice :
GuardedFunctionalChoice -> FunctionalChoiceOnInhabitedSet.
Proof.
intros GAC_fun A B Inh R H.
destruct (GAC_fun A B (fun _ => True) R Inh) as (f,Hf).
firstorder.
exists f; auto.
Qed.
Lemma fun_choice_and_indep_general_prem_imp_guarded_fun_choice :
FunctionalChoiceOnInhabitedSet -> IndependenceOfGeneralPremises
-> GuardedFunctionalChoice.
Proof.
intros AC_fun IndPrem A B P R Inh H.
apply (AC_fun A B Inh (fun x y => P x -> R x y)).
intro x; apply IndPrem; eauto.
Qed.
Corollary fun_choice_and_indep_general_prem_iff_guarded_fun_choice :
FunctionalChoiceOnInhabitedSet /\ IndependenceOfGeneralPremises
<-> GuardedFunctionalChoice.
Proof.
auto decomp using
guarded_fun_choice_imp_indep_of_general_premises,
guarded_fun_choice_imp_fun_choice,
fun_choice_and_indep_general_prem_imp_guarded_fun_choice.
Qed.
(** AC_fun + Drinker = OAC_fun *)
(** This was already observed by Bell [[Bell]] *)
Lemma omniscient_fun_choice_imp_small_drinker :
OmniscientFunctionalChoice -> SmallDrinker'sParadox.
Proof.
intros OAC_fun A P Inh.
destruct (OAC_fun unit A (fun _ => P)) as (f,Hf).
auto.
exists (f tt); firstorder.
Qed.
Lemma omniscient_fun_choice_imp_fun_choice :
OmniscientFunctionalChoice -> FunctionalChoiceOnInhabitedSet.
Proof.
intros OAC_fun A B Inh R H.
destruct (OAC_fun A B R Inh) as (f,Hf).
exists f; firstorder.
Qed.
Lemma fun_choice_and_small_drinker_imp_omniscient_fun_choice :
FunctionalChoiceOnInhabitedSet -> SmallDrinker'sParadox
-> OmniscientFunctionalChoice.
Proof.
intros AC_fun Drinker A B R Inh.
destruct (AC_fun A B Inh (fun x y => (exists y, R x y) -> R x y)) as (f,Hf).
intro x; apply (Drinker B (R x) Inh).
exists f; assumption.
Qed.
Corollary fun_choice_and_small_drinker_iff_omniscient_fun_choice :
FunctionalChoiceOnInhabitedSet /\ SmallDrinker'sParadox
<-> OmniscientFunctionalChoice.
Proof.
auto decomp using
omniscient_fun_choice_imp_small_drinker,
omniscient_fun_choice_imp_fun_choice,
fun_choice_and_small_drinker_imp_omniscient_fun_choice.
Qed.
(** OAC_fun = GAC_fun *)
(** This is derivable from the intuitionistic equivalence between IGP and Drinker
but we give a direct proof *)
Theorem guarded_iff_omniscient_fun_choice :
GuardedFunctionalChoice <-> OmniscientFunctionalChoice.
Proof.
split.
intros GAC_fun A B R Inh.
apply (GAC_fun A B (fun x => exists y, R x y) R); auto.
intros OAC_fun A B P R Inh H.
destruct (OAC_fun A B R Inh) as (f,Hf).
exists f; firstorder.
Qed.
(**********************************************************************)
(** ** D_iota -> ID_iota and D_epsilon <-> ID_epsilon + Drinker *)
(** D_iota -> ID_iota *)
Lemma iota_imp_constructive_definite_description :
IotaStatement -> ConstructiveDefiniteDescription.
Proof.
intros D_iota A P H.
destruct D_iota with (P:=P) as (x,H1).
destruct H; red in H; auto.
exists x; apply H1; assumption.
Qed.
(** ID_epsilon + Drinker <-> D_epsilon *)
Lemma epsilon_imp_constructive_indefinite_description:
EpsilonStatement -> ConstructiveIndefiniteDescription.
Proof.
intros D_epsilon A P H.
destruct D_epsilon with (P:=P) as (x,H1).
destruct H; auto.
exists x; apply H1; assumption.
Qed.
Lemma constructive_indefinite_description_and_small_drinker_imp_epsilon :
SmallDrinker'sParadox -> ConstructiveIndefiniteDescription ->
EpsilonStatement.
Proof.
intros Drinkers D_epsilon A P Inh;
apply D_epsilon; apply Drinkers; assumption.
Qed.
Lemma epsilon_imp_small_drinker :
EpsilonStatement -> SmallDrinker'sParadox.
Proof.
intros D_epsilon A P Inh; edestruct D_epsilon; eauto.
Qed.
Theorem constructive_indefinite_description_and_small_drinker_iff_epsilon :
(SmallDrinker'sParadox * ConstructiveIndefiniteDescription ->
EpsilonStatement) *
(EpsilonStatement ->
SmallDrinker'sParadox * ConstructiveIndefiniteDescription).
Proof.
auto decomp using
epsilon_imp_constructive_indefinite_description,
constructive_indefinite_description_and_small_drinker_imp_epsilon,
epsilon_imp_small_drinker.
Qed.
(**********************************************************************)
(** * Derivability of choice for decidable relations with well-ordered codomain *)
(** Countable codomains, such as [nat], can be equipped with a
well-order, which implies the existence of a least element on
inhabited decidable subsets. As a consequence, the relational form of
the axiom of choice is derivable on [nat] for decidable relations.
We show instead that functional relation reification and the
functional form of the axiom of choice are equivalent on decidable
relation with [nat] as codomain
*)
Require Import Wf_nat.
Require Import Decidable.
Definition FunctionalChoice_on_rel (A B:Type) (R:A->B->Prop) :=
(forall x:A, exists y : B, R x y) ->
exists f : A -> B, (forall x:A, R x (f x)).
Lemma classical_denumerable_description_imp_fun_choice :
forall A:Type,
FunctionalRelReification_on A nat ->
forall R:A->nat->Prop,
(forall x y, decidable (R x y)) -> FunctionalChoice_on_rel R.
Proof.
intros A Descr.
red in |- *; intros R Rdec H.
set (R':= fun x y => R x y /\ forall y', R x y' -> y <= y').
destruct (Descr R') as (f,Hf).
intro x.
apply (dec_inh_nat_subset_has_unique_least_element (R x)).
apply Rdec.
apply (H x).
exists f.
intros x.
destruct (Hf x) as (Hfx,_).
assumption.
Qed.
(**********************************************************************)
(** * Choice on dependent and non dependent function types are equivalent *)
(** ** Choice on dependent and non dependent function types are equivalent *)
Definition DependentFunctionalChoice_on (A:Type) (B:A -> Type) :=
forall R:forall x:A, B x -> Prop,
(forall x:A, exists y : B x, R x y) ->
(exists f : (forall x:A, B x), forall x:A, R x (f x)).
Notation DependentFunctionalChoice :=
(forall A (B:A->Type), DependentFunctionalChoice_on B).
(** The easy part *)
Theorem dep_non_dep_functional_choice :
DependentFunctionalChoice -> FunctionalChoice.
Proof.
intros AC_depfun A B R H.
destruct (AC_depfun A (fun _ => B) R H) as (f,Hf).
exists f; trivial.
Qed.
(** Deriving choice on product types requires some computation on
singleton propositional types, so we need computational
conjunction projections and dependent elimination of conjunction
and equality *)
Scheme and_indd := Induction for and Sort Prop.
Scheme eq_indd := Induction for eq Sort Prop.
Definition proj1_inf (A B:Prop) (p : A/\B) :=
let (a,b) := p in a.
Theorem non_dep_dep_functional_choice :
FunctionalChoice -> DependentFunctionalChoice.
Proof.
intros AC_fun A B R H.
pose (B' := { x:A & B x }).
pose (R' := fun (x:A) (y:B') => projT1 y = x /\ R (projT1 y) (projT2 y)).
destruct (AC_fun A B' R') as (f,Hf).
intros x. destruct (H x) as (y,Hy).
exists (existT (fun x => B x) x y). split; trivial.
exists (fun x => eq_rect _ _ (projT2 (f x)) _ (proj1_inf (Hf x))).
intro x; destruct (Hf x) as (Heq,HR) using and_indd.
destruct (f x); simpl in *.
destruct Heq using eq_indd; trivial.
Qed.
(** ** Reification of dependent and non dependent functional relation are equivalent *)
Definition DependentFunctionalRelReification_on (A:Type) (B:A -> Type) :=
forall (R:forall x:A, B x -> Prop),
(forall x:A, exists! y : B x, R x y) ->
(exists f : (forall x:A, B x), forall x:A, R x (f x)).
Notation DependentFunctionalRelReification :=
(forall A (B:A->Type), DependentFunctionalRelReification_on B).
(** The easy part *)
Theorem dep_non_dep_functional_rel_reification :
DependentFunctionalRelReification -> FunctionalRelReification.
Proof.
intros DepFunReify A B R H.
destruct (DepFunReify A (fun _ => B) R H) as (f,Hf).
exists f; trivial.
Qed.
(** Deriving choice on product types requires some computation on
singleton propositional types, so we need computational
conjunction projections and dependent elimination of conjunction
and equality *)
Theorem non_dep_dep_functional_rel_reification :
FunctionalRelReification -> DependentFunctionalRelReification.
Proof.
intros AC_fun A B R H.
pose (B' := { x:A & B x }).
pose (R' := fun (x:A) (y:B') => projT1 y = x /\ R (projT1 y) (projT2 y)).
destruct (AC_fun A B' R') as (f,Hf).
intros x. destruct (H x) as (y,(Hy,Huni)).
exists (existT (fun x => B x) x y). repeat split; trivial.
intros (x',y') (Heqx',Hy').
simpl in *.
destruct Heqx'.
rewrite (Huni y'); trivial.
exists (fun x => eq_rect _ _ (projT2 (f x)) _ (proj1_inf (Hf x))).
intro x; destruct (Hf x) as (Heq,HR) using and_indd.
destruct (f x); simpl in *.
destruct Heq using eq_indd; trivial.
Qed.
Corollary dep_iff_non_dep_functional_rel_reification :
FunctionalRelReification <-> DependentFunctionalRelReification.
Proof.
auto decomp using
non_dep_dep_functional_rel_reification,
dep_non_dep_functional_rel_reification.
Qed.
(**********************************************************************)
(** * Non contradiction of constructive descriptions wrt functional axioms of choice *)
(** ** Non contradiction of indefinite description *)
Lemma relative_non_contradiction_of_indefinite_descr :
forall C:Prop, (ConstructiveIndefiniteDescription -> C)
-> (FunctionalChoice -> C).
Proof.
intros C H AC_fun.
assert (AC_depfun := non_dep_dep_functional_choice AC_fun).
pose (A0 := { A:Type & { P:A->Prop & exists x, P x }}).
pose (B0 := fun x:A0 => projT1 x).
pose (R0 := fun x:A0 => fun y:B0 x => projT1 (projT2 x) y).
pose (H0 := fun x:A0 => projT2 (projT2 x)).
destruct (AC_depfun A0 B0 R0 H0) as (f, Hf).
apply H.
intros A P H'.
exists (f (existT _ A (existT _ P H'))).
pose (Hf' := Hf (existT _ A (existT _ P H'))).
assumption.
Qed.
Lemma constructive_indefinite_descr_fun_choice :
ConstructiveIndefiniteDescription -> FunctionalChoice.
Proof.
intros IndefDescr A B R H.
exists (fun x => proj1_sig (IndefDescr B (R x) (H x))).
intro x.
apply (proj2_sig (IndefDescr B (R x) (H x))).
Qed.
(** ** Non contradiction of definite description *)
Lemma relative_non_contradiction_of_definite_descr :
forall C:Prop, (ConstructiveDefiniteDescription -> C)
-> (FunctionalRelReification -> C).
Proof.
intros C H FunReify.
assert (DepFunReify := non_dep_dep_functional_rel_reification FunReify).
pose (A0 := { A:Type & { P:A->Prop & exists! x, P x }}).
pose (B0 := fun x:A0 => projT1 x).
pose (R0 := fun x:A0 => fun y:B0 x => projT1 (projT2 x) y).
pose (H0 := fun x:A0 => projT2 (projT2 x)).
destruct (DepFunReify A0 B0 R0 H0) as (f, Hf).
apply H.
intros A P H'.
exists (f (existT _ A (existT _ P H'))).
pose (Hf' := Hf (existT _ A (existT _ P H'))).
assumption.
Qed.
Lemma constructive_definite_descr_fun_reification :
ConstructiveDefiniteDescription -> FunctionalRelReification.
Proof.
intros DefDescr A B R H.
exists (fun x => proj1_sig (DefDescr B (R x) (H x))).
intro x.
apply (proj2_sig (DefDescr B (R x) (H x))).
Qed.
(** Remark, the following corollaries morally hold:
Definition In_propositional_context (A:Type) := forall C:Prop, (A -> C) -> C.
Corollary constructive_definite_descr_in_prop_context_iff_fun_reification :
In_propositional_context ConstructiveIndefiniteDescription
<-> FunctionalChoice.
Corollary constructive_definite_descr_in_prop_context_iff_fun_reification :
In_propositional_context ConstructiveDefiniteDescription
<-> FunctionalRelReification.
but expecting [FunctionalChoice] (resp. [FunctionalRelReification]) to
be applied on the same Type universes on both sides of the first
(resp. second) equivalence breaks the stratification of universes.
*)
(**********************************************************************)
(** * Excluded-middle + definite description => computational excluded-middle *)
(** The idea for the following proof comes from [[ChicliPottierSimpson02]] *)
(** Classical logic and axiom of unique choice (i.e. functional
relation reification), as shown in [[ChicliPottierSimpson02]],
implies the double-negation of excluded-middle in [Set] (which is
incompatible with the impredicativity of [Set]).
We adapt the proof to show that constructive definite description
transports excluded-middle from [Prop] to [Set].
[[ChicliPottierSimpson02]] Laurent Chicli, Loïc Pottier, Carlos
Simpson, Mathematical Quotients and Quotient Types in Coq,
Proceedings of TYPES 2002, Lecture Notes in Computer Science 2646,
Springer Verlag. *)
Require Import Setoid.
Theorem constructive_definite_descr_excluded_middle :
ConstructiveDefiniteDescription ->
(forall P:Prop, P \/ ~ P) -> (forall P:Prop, {P} + {~ P}).
Proof.
intros Descr EM P.
pose (select := fun b:bool => if b then P else ~P).
assert { b:bool | select b } as ([|],HP).
apply Descr.
rewrite <- unique_existence; split.
destruct (EM P).
exists true; trivial.
exists false; trivial.
intros [|] [|] H1 H2; simpl in *; reflexivity || contradiction.
left; trivial.
right; trivial.
Qed.
Corollary fun_reification_descr_computational_excluded_middle_in_prop_context :
FunctionalRelReification ->
(forall P:Prop, P \/ ~ P) ->
forall C:Prop, ((forall P:Prop, {P} + {~ P}) -> C) -> C.
Proof.
intros FunReify EM C; auto decomp using
constructive_definite_descr_excluded_middle,
(relative_non_contradiction_of_definite_descr (C:=C)).
Qed.
(**********************************************************************)
(** * Choice => Dependent choice => Countable choice *)
(* The implications below are standard *)
Require Import Arith.
Theorem functional_choice_imp_functional_dependent_choice :
FunctionalChoice -> FunctionalDependentChoice.
Proof.
intros FunChoice A R HRfun x0.
apply FunChoice in HRfun as (g,Rg).
set (f:=fix f n := match n with 0 => x0 | S n' => g (f n') end).
exists f; firstorder.
Qed.
Theorem functional_dependent_choice_imp_functional_countable_choice :
FunctionalDependentChoice -> FunctionalCountableChoice.
Proof.
intros H A R H0.
set (R' (p q:nat*A) := fst q = S (fst p) /\ R (fst p) (snd q)).
destruct (H0 0) as (y0,Hy0).
destruct H with (R:=R') (x0:=(0,y0)) as (f,(Hf0,HfS)).
intro x; destruct (H0 (fst x)) as (y,Hy).
exists (S (fst x),y).
red. auto.
assert (Heq:forall n, fst (f n) = n).
induction n.
rewrite Hf0; reflexivity.
specialize HfS with n; destruct HfS as (->,_); congruence.
exists (fun n => snd (f (S n))).
intro n'. specialize HfS with n'.
destruct HfS as (_,HR).
rewrite Heq in HR.
assumption.
Qed.
|