1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
(** Some facts and definitions concerning choice and description in
intuitionistic logic. *)
(** * References: *)
(**
[[Bell]] John L. Bell, Choice principles in intuitionistic set theory,
unpublished.
[[Bell93]] John L. Bell, Hilbert's Epsilon Operator in Intuitionistic
Type Theories, Mathematical Logic Quarterly, volume 39, 1993.
[[Carlström04]] Jesper Carlström, EM + Ext_ + AC_int is equivalent to
AC_ext, Mathematical Logic Quaterly, vol 50(3), pp 236-240, 2004.
[[Carlström05]] Jesper Carlström, Interpreting descriptions in
intentional type theory, Journal of Symbolic Logic 70(2):488-514, 2005.
[[Werner97]] Benjamin Werner, Sets in Types, Types in Sets, TACS, 1997.
*)
Require Import RelationClasses Logic.
Set Implicit Arguments.
Local Unset Intuition Negation Unfolding.
(**********************************************************************)
(** * Definitions *)
(** Choice, reification and description schemes *)
(** We make them all polymorphic. Most of them have existentials as conclusion
so they require polymorphism otherwise their first application (e.g. to an
existential in [Set]) will fix the level of [A].
*)
(* Set Universe Polymorphism. *)
Section ChoiceSchemes.
Variables A B :Type.
Variable P:A->Prop.
(** ** Constructive choice and description *)
(** AC_rel = relational form of the (non extensional) axiom of choice
(a "set-theoretic" axiom of choice) *)
Definition RelationalChoice_on :=
forall R:A->B->Prop,
(forall x : A, exists y : B, R x y) ->
(exists R' : A->B->Prop, subrelation R' R /\ forall x, exists! y, R' x y).
(** AC_fun = functional form of the (non extensional) axiom of choice
(a "type-theoretic" axiom of choice) *)
(* Note: This is called Type-Theoretic Description Axiom (TTDA) in
[[Werner97]] (using a non-standard meaning of "description"). This
is called intensional axiom of choice (AC_int) in [[Carlström04]] *)
Definition FunctionalChoice_on_rel (R:A->B->Prop) :=
(forall x:A, exists y : B, R x y) ->
exists f : A -> B, (forall x:A, R x (f x)).
Definition FunctionalChoice_on :=
forall R:A->B->Prop,
(forall x : A, exists y : B, R x y) ->
(exists f : A->B, forall x : A, R x (f x)).
(** AC_fun_dep = functional form of the (non extensional) axiom of
choice, with dependent functions *)
Definition DependentFunctionalChoice_on (A:Type) (B:A -> Type) :=
forall R:forall x:A, B x -> Prop,
(forall x:A, exists y : B x, R x y) ->
(exists f : (forall x:A, B x), forall x:A, R x (f x)).
(** AC_trunc = axiom of choice for propositional truncations
(truncation and quantification commute) *)
Definition InhabitedForallCommute_on (A : Type) (B : A -> Type) :=
(forall x, inhabited (B x)) -> inhabited (forall x, B x).
(** DC_fun = functional form of the dependent axiom of choice *)
Definition FunctionalDependentChoice_on :=
forall (R:A->A->Prop),
(forall x, exists y, R x y) -> forall x0,
(exists f : nat -> A, f 0 = x0 /\ forall n, R (f n) (f (S n))).
(** ACw_fun = functional form of the countable axiom of choice *)
Definition FunctionalCountableChoice_on :=
forall (R:nat->A->Prop),
(forall n, exists y, R n y) ->
(exists f : nat -> A, forall n, R n (f n)).
(** AC! = functional relation reification
(known as axiom of unique choice in topos theory,
sometimes called principle of definite description in
the context of constructive type theory, sometimes
called axiom of no choice) *)
Definition FunctionalRelReification_on :=
forall R:A->B->Prop,
(forall x : A, exists! y : B, R x y) ->
(exists f : A->B, forall x : A, R x (f x)).
(** AC_dep! = functional relation reification, with dependent functions
see AC! *)
Definition DependentFunctionalRelReification_on (A:Type) (B:A -> Type) :=
forall (R:forall x:A, B x -> Prop),
(forall x:A, exists! y : B x, R x y) ->
(exists f : (forall x:A, B x), forall x:A, R x (f x)).
(** AC_fun_repr = functional choice of a representative in an equivalence class *)
(* Note: This is called Type-Theoretic Choice Axiom (TTCA) in
[[Werner97]] (by reference to the extensional set-theoretic
formulation of choice); Note also a typo in its intended
formulation in [[Werner97]]. *)
Definition RepresentativeFunctionalChoice_on :=
forall R:A->A->Prop,
(Equivalence R) ->
(exists f : A->A, forall x : A, (R x (f x)) /\ forall x', R x x' -> f x = f x').
(** AC_fun_setoid = functional form of the (so-called extensional) axiom of
choice from setoids *)
Definition SetoidFunctionalChoice_on :=
forall R : A -> A -> Prop,
forall T : A -> B -> Prop,
Equivalence R ->
(forall x x' y, R x x' -> T x y -> T x' y) ->
(forall x, exists y, T x y) ->
exists f : A -> B, forall x : A, T x (f x) /\ (forall x' : A, R x x' -> f x = f x').
(** AC_fun_setoid_gen = functional form of the general form of the (so-called
extensional) axiom of choice over setoids *)
(* Note: This is called extensional axiom of choice (AC_ext) in
[[Carlström04]]. *)
Definition GeneralizedSetoidFunctionalChoice_on :=
forall R : A -> A -> Prop,
forall S : B -> B -> Prop,
forall T : A -> B -> Prop,
Equivalence R ->
Equivalence S ->
(forall x x' y y', R x x' -> S y y' -> T x y -> T x' y') ->
(forall x, exists y, T x y) ->
exists f : A -> B,
forall x : A, T x (f x) /\ (forall x' : A, R x x' -> S (f x) (f x')).
(** AC_fun_setoid_simple = functional form of the (so-called extensional) axiom of
choice from setoids on locally compatible relations *)
Definition SimpleSetoidFunctionalChoice_on A B :=
forall R : A -> A -> Prop,
forall T : A -> B -> Prop,
Equivalence R ->
(forall x, exists y, forall x', R x x' -> T x' y) ->
exists f : A -> B, forall x : A, T x (f x) /\ (forall x' : A, R x x' -> f x = f x').
(** ID_epsilon = constructive version of indefinite description;
combined with proof-irrelevance, it may be connected to
Carlström's type theory with a constructive indefinite description
operator *)
Definition ConstructiveIndefiniteDescription_on :=
forall P:A->Prop,
(exists x, P x) -> { x:A | P x }.
(** ID_iota = constructive version of definite description;
combined with proof-irrelevance, it may be connected to
Carlström's and Stenlund's type theory with a
constructive definite description operator) *)
Definition ConstructiveDefiniteDescription_on :=
forall P:A->Prop,
(exists! x, P x) -> { x:A | P x }.
(** ** Weakly classical choice and description *)
(** GAC_rel = guarded relational form of the (non extensional) axiom of choice *)
Definition GuardedRelationalChoice_on :=
forall P : A->Prop, forall R : A->B->Prop,
(forall x : A, P x -> exists y : B, R x y) ->
(exists R' : A->B->Prop,
subrelation R' R /\ forall x, P x -> exists! y, R' x y).
(** GAC_fun = guarded functional form of the (non extensional) axiom of choice *)
Definition GuardedFunctionalChoice_on :=
forall P : A->Prop, forall R : A->B->Prop,
inhabited B ->
(forall x : A, P x -> exists y : B, R x y) ->
(exists f : A->B, forall x, P x -> R x (f x)).
(** GAC! = guarded functional relation reification *)
Definition GuardedFunctionalRelReification_on :=
forall P : A->Prop, forall R : A->B->Prop,
inhabited B ->
(forall x : A, P x -> exists! y : B, R x y) ->
(exists f : A->B, forall x : A, P x -> R x (f x)).
(** OAC_rel = "omniscient" relational form of the (non extensional) axiom of choice *)
Definition OmniscientRelationalChoice_on :=
forall R : A->B->Prop,
exists R' : A->B->Prop,
subrelation R' R /\ forall x : A, (exists y : B, R x y) -> exists! y, R' x y.
(** OAC_fun = "omniscient" functional form of the (non extensional) axiom of choice
(called AC* in Bell [[Bell]]) *)
Definition OmniscientFunctionalChoice_on :=
forall R : A->B->Prop,
inhabited B ->
exists f : A->B, forall x : A, (exists y : B, R x y) -> R x (f x).
(** D_epsilon = (weakly classical) indefinite description principle *)
Definition EpsilonStatement_on :=
forall P:A->Prop,
inhabited A -> { x:A | (exists x, P x) -> P x }.
(** D_iota = (weakly classical) definite description principle *)
Definition IotaStatement_on :=
forall P:A->Prop,
inhabited A -> { x:A | (exists! x, P x) -> P x }.
End ChoiceSchemes.
(** Generalized schemes *)
Notation RelationalChoice :=
(forall A B : Type, RelationalChoice_on A B).
Notation FunctionalChoice :=
(forall A B : Type, FunctionalChoice_on A B).
Notation DependentFunctionalChoice :=
(forall A (B:A->Type), DependentFunctionalChoice_on B).
Notation InhabitedForallCommute :=
(forall A (B : A -> Type), InhabitedForallCommute_on B).
Notation FunctionalDependentChoice :=
(forall A : Type, FunctionalDependentChoice_on A).
Notation FunctionalCountableChoice :=
(forall A : Type, FunctionalCountableChoice_on A).
Notation FunctionalChoiceOnInhabitedSet :=
(forall A B : Type, inhabited B -> FunctionalChoice_on A B).
Notation FunctionalRelReification :=
(forall A B : Type, FunctionalRelReification_on A B).
Notation DependentFunctionalRelReification :=
(forall A (B:A->Type), DependentFunctionalRelReification_on B).
Notation RepresentativeFunctionalChoice :=
(forall A : Type, RepresentativeFunctionalChoice_on A).
Notation SetoidFunctionalChoice :=
(forall A B: Type, SetoidFunctionalChoice_on A B).
Notation GeneralizedSetoidFunctionalChoice :=
(forall A B : Type, GeneralizedSetoidFunctionalChoice_on A B).
Notation SimpleSetoidFunctionalChoice :=
(forall A B : Type, SimpleSetoidFunctionalChoice_on A B).
Notation GuardedRelationalChoice :=
(forall A B : Type, GuardedRelationalChoice_on A B).
Notation GuardedFunctionalChoice :=
(forall A B : Type, GuardedFunctionalChoice_on A B).
Notation GuardedFunctionalRelReification :=
(forall A B : Type, GuardedFunctionalRelReification_on A B).
Notation OmniscientRelationalChoice :=
(forall A B : Type, OmniscientRelationalChoice_on A B).
Notation OmniscientFunctionalChoice :=
(forall A B : Type, OmniscientFunctionalChoice_on A B).
Notation ConstructiveDefiniteDescription :=
(forall A : Type, ConstructiveDefiniteDescription_on A).
Notation ConstructiveIndefiniteDescription :=
(forall A : Type, ConstructiveIndefiniteDescription_on A).
Notation IotaStatement :=
(forall A : Type, IotaStatement_on A).
Notation EpsilonStatement :=
(forall A : Type, EpsilonStatement_on A).
(** Subclassical schemes *)
(** PI = proof irrelevance *)
Definition ProofIrrelevance :=
forall (A:Prop) (a1 a2:A), a1 = a2.
(** IGP = independence of general premises
(an unconstrained generalisation of the constructive principle of
independence of premises) *)
Definition IndependenceOfGeneralPremises :=
forall (A:Type) (P:A -> Prop) (Q:Prop),
inhabited A ->
(Q -> exists x, P x) -> exists x, Q -> P x.
(** Drinker = drinker's paradox (small form)
(called Ex in Bell [[Bell]]) *)
Definition SmallDrinker'sParadox :=
forall (A:Type) (P:A -> Prop), inhabited A ->
exists x, (exists x, P x) -> P x.
(** EM = excluded-middle *)
Definition ExcludedMiddle :=
forall P:Prop, P \/ ~ P.
(** Extensional schemes *)
(** Ext_prop_repr = choice of a representative among extensional propositions *)
Local Notation ExtensionalPropositionRepresentative :=
(forall (A:Type),
exists h : Prop -> Prop,
forall P : Prop, (P <-> h P) /\ forall Q, (P <-> Q) -> h P = h Q).
(** Ext_pred_repr = choice of a representative among extensional predicates *)
Local Notation ExtensionalPredicateRepresentative :=
(forall (A:Type),
exists h : (A->Prop) -> (A->Prop),
forall (P : A -> Prop), (forall x, P x <-> h P x) /\ forall Q, (forall x, P x <-> Q x) -> h P = h Q).
(** Ext_fun_repr = choice of a representative among extensional functions *)
Local Notation ExtensionalFunctionRepresentative :=
(forall (A B:Type),
exists h : (A->B) -> (A->B),
forall (f : A -> B), (forall x, f x = h f x) /\ forall g, (forall x, f x = g x) -> h f = h g).
(** We let also
- IPL_2 = 2nd-order impredicative minimal predicate logic (with ex. quant.)
- IPL^2 = 2nd-order functional minimal predicate logic (with ex. quant.)
- IPL_2^2 = 2nd-order impredicative, 2nd-order functional minimal pred. logic (with ex. quant.)
with no prerequisite on the non-emptiness of domains
*)
(**********************************************************************)
(** * Table of contents *)
(* This is very fragile. *)
(**
1. Definitions
2. IPL_2^2 |- AC_rel + AC! = AC_fun
3.1. typed IPL_2 + Sigma-types + PI |- AC_rel = GAC_rel and IPL_2 |- AC_rel + IGP -> GAC_rel and IPL_2 |- GAC_rel = OAC_rel
3.2. IPL^2 |- AC_fun + IGP = GAC_fun = OAC_fun = AC_fun + Drinker
3.3. D_iota -> ID_iota and D_epsilon <-> ID_epsilon + Drinker
4. Derivability of choice for decidable relations with well-ordered codomain
5. AC_fun = AC_fun_dep = AC_trunc
6. Non contradiction of constructive descriptions wrt functional choices
7. Definite description transports classical logic to the computational world
8. Choice -> Dependent choice -> Countable choice
9.1. AC_fun_setoid = AC_fun + Ext_fun_repr + EM
9.2. AC_fun_setoid = AC_fun + Ext_pred_repr + PI
*)
(**********************************************************************)
(** * AC_rel + AC! = AC_fun
We show that the functional formulation of the axiom of Choice
(usual formulation in type theory) is equivalent to its relational
formulation (only formulation of set theory) + functional relation
reification (aka axiom of unique choice, or, principle of (parametric)
definite descriptions) *)
(** This shows that the axiom of choice can be assumed (under its
relational formulation) without known inconsistency with classical logic,
though functional relation reification conflicts with classical logic *)
Lemma functional_rel_reification_and_rel_choice_imp_fun_choice :
forall A B : Type,
FunctionalRelReification_on A B -> RelationalChoice_on A B -> FunctionalChoice_on A B.
Proof.
intros A B Descr RelCh R H.
destruct (RelCh R H) as (R',(HR'R,H0)).
destruct (Descr R') as (f,Hf).
firstorder.
exists f; intro x.
destruct (H0 x) as (y,(HR'xy,Huniq)).
rewrite <- (Huniq (f x) (Hf x)).
apply HR'R; assumption.
Qed.
Lemma fun_choice_imp_rel_choice :
forall A B : Type, FunctionalChoice_on A B -> RelationalChoice_on A B.
Proof.
intros A B FunCh R H.
destruct (FunCh R H) as (f,H0).
exists (fun x y => f x = y).
split.
intros x y Heq; rewrite <- Heq; trivial.
intro x; exists (f x); split.
reflexivity.
trivial.
Qed.
Lemma fun_choice_imp_functional_rel_reification :
forall A B : Type, FunctionalChoice_on A B -> FunctionalRelReification_on A B.
Proof.
intros A B FunCh R H.
destruct (FunCh R) as [f H0].
(* 1 *)
intro x.
destruct (H x) as (y,(HRxy,_)).
exists y; exact HRxy.
(* 2 *)
exists f; exact H0.
Qed.
Corollary fun_choice_iff_rel_choice_and_functional_rel_reification :
forall A B : Type, FunctionalChoice_on A B <->
RelationalChoice_on A B /\ FunctionalRelReification_on A B.
Proof.
intros A B. split.
intro H; split;
[ exact (fun_choice_imp_rel_choice H)
| exact (fun_choice_imp_functional_rel_reification H) ].
intros [H H0]; exact (functional_rel_reification_and_rel_choice_imp_fun_choice H0 H).
Qed.
(**********************************************************************)
(** * Connection between the guarded, non guarded and omniscient choices *)
(** We show that the guarded formulations of the axiom of choice
are equivalent to their "omniscient" variant and comes from the non guarded
formulation in presence either of the independence of general premises
or subset types (themselves derivable from subtypes thanks to proof-
irrelevance) *)
(**********************************************************************)
(** ** AC_rel + PI -> GAC_rel and AC_rel + IGP -> GAC_rel and GAC_rel = OAC_rel *)
Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice :
RelationalChoice -> ProofIrrelevance -> GuardedRelationalChoice.
Proof.
intros rel_choice proof_irrel.
red; intros A B P R H.
destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as (R',(HR'R,H0)).
intros (x,HPx).
destruct (H x HPx) as (y,HRxy).
exists y; exact HRxy.
set (R'' := fun (x:A) (y:B) => exists H : P x, R' (existT P x H) y).
exists R''; split.
intros x y (HPx,HR'xy).
change x with (projT1 (existT P x HPx)); apply HR'R; exact HR'xy.
intros x HPx.
destruct (H0 (existT P x HPx)) as (y,(HR'xy,Huniq)).
exists y; split. exists HPx; exact HR'xy.
intros y' (H'Px,HR'xy').
apply Huniq.
rewrite proof_irrel with (a1 := HPx) (a2 := H'Px); exact HR'xy'.
Qed.
Lemma rel_choice_indep_of_general_premises_imp_guarded_rel_choice :
forall A B : Type, inhabited B -> RelationalChoice_on A B ->
IndependenceOfGeneralPremises -> GuardedRelationalChoice_on A B.
Proof.
intros A B Inh AC_rel IndPrem P R H.
destruct (AC_rel (fun x y => P x -> R x y)) as (R',(HR'R,H0)).
intro x. apply IndPrem. exact Inh. intro Hx.
apply H; assumption.
exists (fun x y => P x /\ R' x y).
firstorder.
Qed.
Lemma guarded_rel_choice_imp_rel_choice :
forall A B : Type, GuardedRelationalChoice_on A B -> RelationalChoice_on A B.
Proof.
intros A B GAC_rel R H.
destruct (GAC_rel (fun _ => True) R) as (R',(HR'R,H0)).
firstorder.
exists R'; firstorder.
Qed.
Lemma subset_types_imp_guarded_rel_choice_iff_rel_choice :
ProofIrrelevance -> (GuardedRelationalChoice <-> RelationalChoice).
Proof.
intuition auto using
guarded_rel_choice_imp_rel_choice,
rel_choice_and_proof_irrel_imp_guarded_rel_choice.
Qed.
(** OAC_rel = GAC_rel *)
Corollary guarded_iff_omniscient_rel_choice :
GuardedRelationalChoice <-> OmniscientRelationalChoice.
Proof.
split.
intros GAC_rel A B R.
apply (GAC_rel A B (fun x => exists y, R x y) R); auto.
intros OAC_rel A B P R H.
destruct (OAC_rel A B R) as (f,Hf); exists f; firstorder.
Qed.
(**********************************************************************)
(** ** AC_fun + IGP = GAC_fun = OAC_fun = AC_fun + Drinker *)
(** AC_fun + IGP = GAC_fun *)
Lemma guarded_fun_choice_imp_indep_of_general_premises :
GuardedFunctionalChoice -> IndependenceOfGeneralPremises.
Proof.
intros GAC_fun A P Q Inh H.
destruct (GAC_fun unit A (fun _ => Q) (fun _ => P) Inh) as (f,Hf).
tauto.
exists (f tt); auto.
Qed.
Lemma guarded_fun_choice_imp_fun_choice :
GuardedFunctionalChoice -> FunctionalChoiceOnInhabitedSet.
Proof.
intros GAC_fun A B Inh R H.
destruct (GAC_fun A B (fun _ => True) R Inh) as (f,Hf).
firstorder.
exists f; auto.
Qed.
Lemma fun_choice_and_indep_general_prem_imp_guarded_fun_choice :
FunctionalChoiceOnInhabitedSet -> IndependenceOfGeneralPremises
-> GuardedFunctionalChoice.
Proof.
intros AC_fun IndPrem A B P R Inh H.
apply (AC_fun A B Inh (fun x y => P x -> R x y)).
intro x; apply IndPrem; eauto.
Qed.
Corollary fun_choice_and_indep_general_prem_iff_guarded_fun_choice :
FunctionalChoiceOnInhabitedSet /\ IndependenceOfGeneralPremises
<-> GuardedFunctionalChoice.
Proof.
intuition auto using
guarded_fun_choice_imp_indep_of_general_premises,
guarded_fun_choice_imp_fun_choice,
fun_choice_and_indep_general_prem_imp_guarded_fun_choice.
Qed.
(** AC_fun + Drinker = OAC_fun *)
(** This was already observed by Bell [[Bell]] *)
Lemma omniscient_fun_choice_imp_small_drinker :
OmniscientFunctionalChoice -> SmallDrinker'sParadox.
Proof.
intros OAC_fun A P Inh.
destruct (OAC_fun unit A (fun _ => P)) as (f,Hf).
auto.
exists (f tt); firstorder.
Qed.
Lemma omniscient_fun_choice_imp_fun_choice :
OmniscientFunctionalChoice -> FunctionalChoiceOnInhabitedSet.
Proof.
intros OAC_fun A B Inh R H.
destruct (OAC_fun A B R Inh) as (f,Hf).
exists f; firstorder.
Qed.
Lemma fun_choice_and_small_drinker_imp_omniscient_fun_choice :
FunctionalChoiceOnInhabitedSet -> SmallDrinker'sParadox
-> OmniscientFunctionalChoice.
Proof.
intros AC_fun Drinker A B R Inh.
destruct (AC_fun A B Inh (fun x y => (exists y, R x y) -> R x y)) as (f,Hf).
intro x; apply (Drinker B (R x) Inh).
exists f; assumption.
Qed.
Corollary fun_choice_and_small_drinker_iff_omniscient_fun_choice :
FunctionalChoiceOnInhabitedSet /\ SmallDrinker'sParadox
<-> OmniscientFunctionalChoice.
Proof.
intuition auto using
omniscient_fun_choice_imp_small_drinker,
omniscient_fun_choice_imp_fun_choice,
fun_choice_and_small_drinker_imp_omniscient_fun_choice.
Qed.
(** OAC_fun = GAC_fun *)
(** This is derivable from the intuitionistic equivalence between IGP and Drinker
but we give a direct proof *)
Theorem guarded_iff_omniscient_fun_choice :
GuardedFunctionalChoice <-> OmniscientFunctionalChoice.
Proof.
split.
intros GAC_fun A B R Inh.
apply (GAC_fun A B (fun x => exists y, R x y) R); auto.
intros OAC_fun A B P R Inh H.
destruct (OAC_fun A B R Inh) as (f,Hf).
exists f; firstorder.
Qed.
(**********************************************************************)
(** ** D_iota -> ID_iota and D_epsilon <-> ID_epsilon + Drinker *)
(** D_iota -> ID_iota *)
Lemma iota_imp_constructive_definite_description :
IotaStatement -> ConstructiveDefiniteDescription.
Proof.
intros D_iota A P H.
destruct D_iota with (P:=P) as (x,H1).
destruct H; red in H; auto.
exists x; apply H1; assumption.
Qed.
(** ID_epsilon + Drinker <-> D_epsilon *)
Lemma epsilon_imp_constructive_indefinite_description:
EpsilonStatement -> ConstructiveIndefiniteDescription.
Proof.
intros D_epsilon A P H.
destruct D_epsilon with (P:=P) as (x,H1).
destruct H; auto.
exists x; apply H1; assumption.
Qed.
Lemma constructive_indefinite_description_and_small_drinker_imp_epsilon :
SmallDrinker'sParadox -> ConstructiveIndefiniteDescription ->
EpsilonStatement.
Proof.
intros Drinkers D_epsilon A P Inh;
apply D_epsilon; apply Drinkers; assumption.
Qed.
Lemma epsilon_imp_small_drinker :
EpsilonStatement -> SmallDrinker'sParadox.
Proof.
intros D_epsilon A P Inh; edestruct D_epsilon; eauto.
Qed.
Theorem constructive_indefinite_description_and_small_drinker_iff_epsilon :
(SmallDrinker'sParadox * ConstructiveIndefiniteDescription ->
EpsilonStatement) *
(EpsilonStatement ->
SmallDrinker'sParadox * ConstructiveIndefiniteDescription).
Proof.
intuition auto using
epsilon_imp_constructive_indefinite_description,
constructive_indefinite_description_and_small_drinker_imp_epsilon,
epsilon_imp_small_drinker.
Qed.
(**********************************************************************)
(** * Derivability of choice for decidable relations with well-ordered codomain *)
(** Countable codomains, such as [nat], can be equipped with a
well-order, which implies the existence of a least element on
inhabited decidable subsets. As a consequence, the relational form of
the axiom of choice is derivable on [nat] for decidable relations.
We show instead that functional relation reification and the
functional form of the axiom of choice are equivalent on decidable
relation with [nat] as codomain
*)
Require Import Wf_nat.
Require Import Decidable.
Lemma classical_denumerable_description_imp_fun_choice :
forall A:Type,
FunctionalRelReification_on A nat ->
forall R:A->nat->Prop,
(forall x y, decidable (R x y)) -> FunctionalChoice_on_rel R.
Proof.
intros A Descr.
red; intros R Rdec H.
set (R':= fun x y => R x y /\ forall y', R x y' -> y <= y').
destruct (Descr R') as (f,Hf).
intro x.
apply (dec_inh_nat_subset_has_unique_least_element (R x)).
apply Rdec.
apply (H x).
exists f.
intros x.
destruct (Hf x) as (Hfx,_).
assumption.
Qed.
(**********************************************************************)
(** * AC_fun = AC_fun_dep = AC_trunc *)
(** ** Choice on dependent and non dependent function types are equivalent *)
(** The easy part *)
Theorem dep_non_dep_functional_choice :
DependentFunctionalChoice -> FunctionalChoice.
Proof.
intros AC_depfun A B R H.
destruct (AC_depfun A (fun _ => B) R H) as (f,Hf).
exists f; trivial.
Qed.
(** Deriving choice on product types requires some computation on
singleton propositional types, so we need computational
conjunction projections and dependent elimination of conjunction
and equality *)
Scheme and_indd := Induction for and Sort Prop.
Scheme eq_indd := Induction for eq Sort Prop.
Definition proj1_inf (A B:Prop) (p : A/\B) :=
let (a,b) := p in a.
Theorem non_dep_dep_functional_choice :
FunctionalChoice -> DependentFunctionalChoice.
Proof.
intros AC_fun A B R H.
pose (B' := { x:A & B x }).
pose (R' := fun (x:A) (y:B') => projT1 y = x /\ R (projT1 y) (projT2 y)).
destruct (AC_fun A B' R') as (f,Hf).
intros x. destruct (H x) as (y,Hy).
exists (existT (fun x => B x) x y). split; trivial.
exists (fun x => eq_rect _ _ (projT2 (f x)) _ (proj1_inf (Hf x))).
intro x; destruct (Hf x) as (Heq,HR) using and_indd.
destruct (f x); simpl in *.
destruct Heq using eq_indd; trivial.
Qed.
(** ** Functional choice and truncation choice are equivalent *)
Theorem functional_choice_to_inhabited_forall_commute :
FunctionalChoice -> InhabitedForallCommute.
Proof.
intros choose0 A B Hinhab.
pose proof (non_dep_dep_functional_choice choose0) as choose;clear choose0.
assert (Hexists : forall x, exists _ : B x, True).
{ intros x;apply inhabited_sig_to_exists.
refine (inhabited_covariant _ (Hinhab x)).
intros y;exists y;exact I. }
apply choose in Hexists.
destruct Hexists as [f _].
exact (inhabits f).
Qed.
Theorem inhabited_forall_commute_to_functional_choice :
InhabitedForallCommute -> FunctionalChoice.
Proof.
intros choose A B R Hexists.
assert (Hinhab : forall x, inhabited {y : B | R x y}).
{ intros x;apply exists_to_inhabited_sig;trivial. }
apply choose in Hinhab. destruct Hinhab as [f].
exists (fun x => proj1_sig (f x)).
exact (fun x => proj2_sig (f x)).
Qed.
(** ** Reification of dependent and non dependent functional relation are equivalent *)
(** The easy part *)
Theorem dep_non_dep_functional_rel_reification :
DependentFunctionalRelReification -> FunctionalRelReification.
Proof.
intros DepFunReify A B R H.
destruct (DepFunReify A (fun _ => B) R H) as (f,Hf).
exists f; trivial.
Qed.
(** Deriving choice on product types requires some computation on
singleton propositional types, so we need computational
conjunction projections and dependent elimination of conjunction
and equality *)
Theorem non_dep_dep_functional_rel_reification :
FunctionalRelReification -> DependentFunctionalRelReification.
Proof.
intros AC_fun A B R H.
pose (B' := { x:A & B x }).
pose (R' := fun (x:A) (y:B') => projT1 y = x /\ R (projT1 y) (projT2 y)).
destruct (AC_fun A B' R') as (f,Hf).
intros x. destruct (H x) as (y,(Hy,Huni)).
exists (existT (fun x => B x) x y). repeat split; trivial.
intros (x',y') (Heqx',Hy').
simpl in *.
destruct Heqx'.
rewrite (Huni y'); trivial.
exists (fun x => eq_rect _ _ (projT2 (f x)) _ (proj1_inf (Hf x))).
intro x; destruct (Hf x) as (Heq,HR) using and_indd.
destruct (f x); simpl in *.
destruct Heq using eq_indd; trivial.
Qed.
Corollary dep_iff_non_dep_functional_rel_reification :
FunctionalRelReification <-> DependentFunctionalRelReification.
Proof.
intuition auto using
non_dep_dep_functional_rel_reification,
dep_non_dep_functional_rel_reification.
Qed.
(**********************************************************************)
(** * Non contradiction of constructive descriptions wrt functional axioms of choice *)
(** ** Non contradiction of indefinite description *)
Lemma relative_non_contradiction_of_indefinite_descr :
forall C:Prop, (ConstructiveIndefiniteDescription -> C)
-> (FunctionalChoice -> C).
Proof.
intros C H AC_fun.
assert (AC_depfun := non_dep_dep_functional_choice AC_fun).
pose (A0 := { A:Type & { P:A->Prop & exists x, P x }}).
pose (B0 := fun x:A0 => projT1 x).
pose (R0 := fun x:A0 => fun y:B0 x => projT1 (projT2 x) y).
pose (H0 := fun x:A0 => projT2 (projT2 x)).
destruct (AC_depfun A0 B0 R0 H0) as (f, Hf).
apply H.
intros A P H'.
exists (f (existT _ A (existT _ P H'))).
pose (Hf' := Hf (existT _ A (existT _ P H'))).
assumption.
Qed.
Lemma constructive_indefinite_descr_fun_choice :
ConstructiveIndefiniteDescription -> FunctionalChoice.
Proof.
intros IndefDescr A B R H.
exists (fun x => proj1_sig (IndefDescr B (R x) (H x))).
intro x.
apply (proj2_sig (IndefDescr B (R x) (H x))).
Qed.
(** ** Non contradiction of definite description *)
Lemma relative_non_contradiction_of_definite_descr :
forall C:Prop, (ConstructiveDefiniteDescription -> C)
-> (FunctionalRelReification -> C).
Proof.
intros C H FunReify.
assert (DepFunReify := non_dep_dep_functional_rel_reification FunReify).
pose (A0 := { A:Type & { P:A->Prop & exists! x, P x }}).
pose (B0 := fun x:A0 => projT1 x).
pose (R0 := fun x:A0 => fun y:B0 x => projT1 (projT2 x) y).
pose (H0 := fun x:A0 => projT2 (projT2 x)).
destruct (DepFunReify A0 B0 R0 H0) as (f, Hf).
apply H.
intros A P H'.
exists (f (existT _ A (existT _ P H'))).
pose (Hf' := Hf (existT _ A (existT _ P H'))).
assumption.
Qed.
Lemma constructive_definite_descr_fun_reification :
ConstructiveDefiniteDescription -> FunctionalRelReification.
Proof.
intros DefDescr A B R H.
exists (fun x => proj1_sig (DefDescr B (R x) (H x))).
intro x.
apply (proj2_sig (DefDescr B (R x) (H x))).
Qed.
(** Remark, the following corollaries morally hold:
Definition In_propositional_context (A:Type) := forall C:Prop, (A -> C) -> C.
Corollary constructive_definite_descr_in_prop_context_iff_fun_reification :
In_propositional_context ConstructiveIndefiniteDescription
<-> FunctionalChoice.
Corollary constructive_definite_descr_in_prop_context_iff_fun_reification :
In_propositional_context ConstructiveDefiniteDescription
<-> FunctionalRelReification.
but expecting [FunctionalChoice] (resp. [FunctionalRelReification]) to
be applied on the same Type universes on both sides of the first
(resp. second) equivalence breaks the stratification of universes.
*)
(**********************************************************************)
(** * Excluded-middle + definite description => computational excluded-middle *)
(** The idea for the following proof comes from [[ChicliPottierSimpson02]] *)
(** Classical logic and axiom of unique choice (i.e. functional
relation reification), as shown in [[ChicliPottierSimpson02]],
implies the double-negation of excluded-middle in [Set] (which is
incompatible with the impredicativity of [Set]).
We adapt the proof to show that constructive definite description
transports excluded-middle from [Prop] to [Set].
[[ChicliPottierSimpson02]] Laurent Chicli, Loïc Pottier, Carlos
Simpson, Mathematical Quotients and Quotient Types in Coq,
Proceedings of TYPES 2002, Lecture Notes in Computer Science 2646,
Springer Verlag. *)
Require Import Setoid.
Theorem constructive_definite_descr_excluded_middle :
(forall A : Type, ConstructiveDefiniteDescription_on A) ->
(forall P:Prop, P \/ ~ P) -> (forall P:Prop, {P} + {~ P}).
Proof.
intros Descr EM P.
pose (select := fun b:bool => if b then P else ~P).
assert { b:bool | select b } as ([|],HP).
red in Descr.
apply Descr.
rewrite <- unique_existence; split.
destruct (EM P).
exists true; trivial.
exists false; trivial.
intros [|] [|] H1 H2; simpl in *; reflexivity || contradiction.
left; trivial.
right; trivial.
Qed.
Corollary fun_reification_descr_computational_excluded_middle_in_prop_context :
FunctionalRelReification ->
(forall P:Prop, P \/ ~ P) ->
forall C:Prop, ((forall P:Prop, {P} + {~ P}) -> C) -> C.
Proof.
intros FunReify EM C H. intuition auto using
constructive_definite_descr_excluded_middle,
(relative_non_contradiction_of_definite_descr (C:=C)).
Qed.
(**********************************************************************)
(** * Choice => Dependent choice => Countable choice *)
(* The implications below are standard *)
Require Import Arith.
Theorem functional_choice_imp_functional_dependent_choice :
FunctionalChoice -> FunctionalDependentChoice.
Proof.
intros FunChoice A R HRfun x0.
apply FunChoice in HRfun as (g,Rg).
set (f:=fix f n := match n with 0 => x0 | S n' => g (f n') end).
exists f; firstorder.
Qed.
Theorem functional_dependent_choice_imp_functional_countable_choice :
FunctionalDependentChoice -> FunctionalCountableChoice.
Proof.
intros H A R H0.
set (R' (p q:nat*A) := fst q = S (fst p) /\ R (fst p) (snd q)).
destruct (H0 0) as (y0,Hy0).
destruct H with (R:=R') (x0:=(0,y0)) as (f,(Hf0,HfS)).
intro x; destruct (H0 (fst x)) as (y,Hy).
exists (S (fst x),y).
red. auto.
assert (Heq:forall n, fst (f n) = n).
induction n.
rewrite Hf0; reflexivity.
specialize HfS with n; destruct HfS as (->,_); congruence.
exists (fun n => snd (f (S n))).
intro n'. specialize HfS with n'.
destruct HfS as (_,HR).
rewrite Heq in HR.
assumption.
Qed.
(**********************************************************************)
(** * About the axiom of choice over setoids *)
Require Import ClassicalFacts PropExtensionalityFacts.
(**********************************************************************)
(** ** Consequences of the choice of a representative in an equivalence class *)
Theorem repr_fun_choice_imp_ext_prop_repr :
RepresentativeFunctionalChoice -> ExtensionalPropositionRepresentative.
Proof.
intros ReprFunChoice A.
pose (R P Q := P <-> Q).
assert (Hequiv:Equivalence R) by (split; firstorder).
apply (ReprFunChoice _ R Hequiv).
Qed.
Theorem repr_fun_choice_imp_ext_pred_repr :
RepresentativeFunctionalChoice -> ExtensionalPredicateRepresentative.
Proof.
intros ReprFunChoice A.
pose (R P Q := forall x : A, P x <-> Q x).
assert (Hequiv:Equivalence R) by (split; firstorder).
apply (ReprFunChoice _ R Hequiv).
Qed.
Theorem repr_fun_choice_imp_ext_function_repr :
RepresentativeFunctionalChoice -> ExtensionalFunctionRepresentative.
Proof.
intros ReprFunChoice A B.
pose (R (f g : A -> B) := forall x : A, f x = g x).
assert (Hequiv:Equivalence R).
{ split; try easy. firstorder using eq_trans. }
apply (ReprFunChoice _ R Hequiv).
Qed.
(** *** This is a variant of Diaconescu and Goodman-Myhill theorems *)
Theorem repr_fun_choice_imp_excluded_middle :
RepresentativeFunctionalChoice -> ExcludedMiddle.
Proof.
intros ReprFunChoice.
apply representative_boolean_partition_imp_excluded_middle, ReprFunChoice.
Qed.
Theorem repr_fun_choice_imp_relational_choice :
RepresentativeFunctionalChoice -> RelationalChoice.
Proof.
intros ReprFunChoice A B T Hexists.
pose (D := (A*B)%type).
pose (R (z z':D) :=
let x := fst z in
let x' := fst z' in
let y := snd z in
let y' := snd z' in
x = x' /\ (T x y -> y = y' \/ T x y') /\ (T x y' -> y = y' \/ T x y)).
assert (Hequiv : Equivalence R).
{ split.
- split. easy. firstorder.
- intros (x,y) (x',y') (H1,(H2,H2')). split. easy. simpl fst in *. simpl snd in *.
subst x'. split; intro H.
+ destruct (H2' H); firstorder.
+ destruct (H2 H); firstorder.
- intros (x,y) (x',y') (x'',y'') (H1,(H2,H2')) (H3,(H4,H4')).
simpl fst in *. simpl snd in *. subst x'' x'. split. easy. split; intro H.
+ simpl fst in *. simpl snd in *. destruct (H2 H) as [<-|H0].
* destruct (H4 H); firstorder.
* destruct (H2' H0), (H4 H0); try subst y'; try subst y''; try firstorder.
+ simpl fst in *. simpl snd in *. destruct (H4' H) as [<-|H0].
* destruct (H2' H); firstorder.
* destruct (H2' H0), (H4 H0); try subst y'; try subst y''; try firstorder. }
destruct (ReprFunChoice D R Hequiv) as (g,Hg).
set (T' x y := T x y /\ exists y', T x y' /\ g (x,y') = (x,y)).
exists T'. split.
- intros x y (H,_); easy.
- intro x. destruct (Hexists x) as (y,Hy).
exists (snd (g (x,y))).
destruct (Hg (x,y)) as ((Heq1,(H',H'')),Hgxyuniq); clear Hg.
destruct (H' Hy) as [Heq2|Hgy]; clear H'.
+ split. split.
* rewrite <- Heq2. assumption.
* exists y. destruct (g (x,y)) as (x',y'). simpl in Heq1, Heq2. subst; easy.
* intros y' (Hy',(y'',(Hy'',Heq))).
rewrite (Hgxyuniq (x,y'')), Heq. easy. split. easy.
split; right; easy.
+ split. split.
* assumption.
* exists y. destruct (g (x,y)) as (x',y'). simpl in Heq1. subst x'; easy.
* intros y' (Hy',(y'',(Hy'',Heq))).
rewrite (Hgxyuniq (x,y'')), Heq. easy. split. easy.
split; right; easy.
Qed.
(**********************************************************************)
(** ** AC_fun_setoid = AC_fun_setoid_gen = AC_fun_setoid_simple *)
Theorem gen_setoid_fun_choice_imp_setoid_fun_choice :
forall A B, GeneralizedSetoidFunctionalChoice_on A B -> SetoidFunctionalChoice_on A B.
Proof.
intros A B GenSetoidFunChoice R T Hequiv Hcompat Hex.
apply GenSetoidFunChoice; try easy.
apply eq_equivalence.
intros * H <-. firstorder.
Qed.
Theorem setoid_fun_choice_imp_gen_setoid_fun_choice :
forall A B, SetoidFunctionalChoice_on A B -> GeneralizedSetoidFunctionalChoice_on A B.
Proof.
intros A B SetoidFunChoice R S T HequivR HequivS Hcompat Hex.
destruct SetoidFunChoice with (R:=R) (T:=T) as (f,Hf); try easy.
{ intros; apply (Hcompat x x' y y); try easy. }
exists f. intros x; specialize Hf with x as (Hf,Huniq). intuition. now erewrite Huniq.
Qed.
Corollary setoid_fun_choice_iff_gen_setoid_fun_choice :
forall A B, SetoidFunctionalChoice_on A B <-> GeneralizedSetoidFunctionalChoice_on A B.
Proof.
split; auto using gen_setoid_fun_choice_imp_setoid_fun_choice, setoid_fun_choice_imp_gen_setoid_fun_choice.
Qed.
Theorem setoid_fun_choice_imp_simple_setoid_fun_choice :
forall A B, SetoidFunctionalChoice_on A B -> SimpleSetoidFunctionalChoice_on A B.
Proof.
intros A B SetoidFunChoice R T Hequiv Hexists.
pose (T' x y := forall x', R x x' -> T x' y).
assert (Hcompat : forall (x x' : A) (y : B), R x x' -> T' x y -> T' x' y) by firstorder.
destruct (SetoidFunChoice R T' Hequiv Hcompat Hexists) as (f,Hf).
exists f. firstorder.
Qed.
Theorem simple_setoid_fun_choice_imp_setoid_fun_choice :
forall A B, SimpleSetoidFunctionalChoice_on A B -> SetoidFunctionalChoice_on A B.
Proof.
intros A B SimpleSetoidFunChoice R T Hequiv Hcompat Hexists.
destruct (SimpleSetoidFunChoice R T Hequiv) as (f,Hf); firstorder.
Qed.
Corollary setoid_fun_choice_iff_simple_setoid_fun_choice :
forall A B, SetoidFunctionalChoice_on A B <-> SimpleSetoidFunctionalChoice_on A B.
Proof.
split; auto using simple_setoid_fun_choice_imp_setoid_fun_choice, setoid_fun_choice_imp_simple_setoid_fun_choice.
Qed.
(**********************************************************************)
(** ** AC_fun_setoid = AC! + AC_fun_repr *)
Theorem setoid_fun_choice_imp_fun_choice :
forall A B, SetoidFunctionalChoice_on A B -> FunctionalChoice_on A B.
Proof.
intros A B SetoidFunChoice T Hexists.
destruct SetoidFunChoice with (R:=@eq A) (T:=T) as (f,Hf).
- apply eq_equivalence.
- now intros * ->.
- assumption.
- exists f. firstorder.
Qed.
Corollary setoid_fun_choice_imp_functional_rel_reification :
forall A B, SetoidFunctionalChoice_on A B -> FunctionalRelReification_on A B.
Proof.
intros A B SetoidFunChoice.
apply fun_choice_imp_functional_rel_reification.
now apply setoid_fun_choice_imp_fun_choice.
Qed.
Theorem setoid_fun_choice_imp_repr_fun_choice :
SetoidFunctionalChoice -> RepresentativeFunctionalChoice .
Proof.
intros SetoidFunChoice A R Hequiv.
apply SetoidFunChoice; firstorder.
Qed.
Theorem functional_rel_reification_and_repr_fun_choice_imp_setoid_fun_choice :
FunctionalRelReification -> RepresentativeFunctionalChoice -> SetoidFunctionalChoice.
Proof.
intros FunRelReify ReprFunChoice A B R T Hequiv Hcompat Hexists.
assert (FunChoice : FunctionalChoice).
{ intros A' B'. apply functional_rel_reification_and_rel_choice_imp_fun_choice.
- apply FunRelReify.
- now apply repr_fun_choice_imp_relational_choice. }
destruct (FunChoice _ _ T Hexists) as (f,Hf).
destruct (ReprFunChoice A R Hequiv) as (g,Hg).
exists (fun a => f (g a)).
intro x. destruct (Hg x) as (Hgx,HRuniq).
split.
- eapply Hcompat. symmetry. apply Hgx. apply Hf.
- intros y Hxy. f_equal. auto.
Qed.
Theorem functional_rel_reification_and_repr_fun_choice_iff_setoid_fun_choice :
FunctionalRelReification /\ RepresentativeFunctionalChoice <-> SetoidFunctionalChoice.
Proof.
split; intros.
- now apply functional_rel_reification_and_repr_fun_choice_imp_setoid_fun_choice.
- split.
+ now intros A B; apply setoid_fun_choice_imp_functional_rel_reification.
+ now apply setoid_fun_choice_imp_repr_fun_choice.
Qed.
(** Note: What characterization to give of
RepresentativeFunctionalChoice? A formulation of it as a functional
relation would certainly be equivalent to the formulation of
SetoidFunctionalChoice as a functional relation, but in their
functional forms, SetoidFunctionalChoice seems strictly stronger *)
(**********************************************************************)
(** * AC_fun_setoid = AC_fun + Ext_fun_repr + EM *)
Import EqNotations.
(** ** This is the main theorem in [[Carlström04]] *)
(** Note: all ingredients have a computational meaning when taken in
separation. However, to compute with the functional choice,
existential quantification has to be thought as a strong
existential, which is incompatible with the computational content of
excluded-middle *)
Theorem fun_choice_and_ext_functions_repr_and_excluded_middle_imp_setoid_fun_choice :
FunctionalChoice -> ExtensionalFunctionRepresentative -> ExcludedMiddle -> RepresentativeFunctionalChoice.
Proof.
intros FunChoice SetoidFunRepr EM A R (Hrefl,Hsym,Htrans).
assert (H:forall P:Prop, exists b, b = true <-> P).
{ intros P. destruct (EM P).
- exists true; firstorder.
- exists false; easy. }
destruct (FunChoice _ _ _ H) as (c,Hc).
pose (class_of a y := c (R a y)).
pose (isclass f := exists x:A, f x = true).
pose (class := {f:A -> bool | isclass f}).
pose (contains (c:class) (a:A) := proj1_sig c a = true).
destruct (FunChoice class A contains) as (f,Hf).
- intros f. destruct (proj2_sig f) as (x,Hx).
exists x. easy.
- destruct (SetoidFunRepr A bool) as (h,Hh).
assert (Hisclass:forall a, isclass (h (class_of a))).
{ intro a. exists a. destruct (Hh (class_of a)) as (Ha,Huniqa).
rewrite <- Ha. apply Hc. apply Hrefl. }
pose (f':= fun a => exist _ (h (class_of a)) (Hisclass a) : class).
exists (fun a => f (f' a)).
intros x. destruct (Hh (class_of x)) as (Hx,Huniqx). split.
+ specialize Hf with (f' x). unfold contains in Hf. simpl in Hf. rewrite <- Hx in Hf. apply Hc. assumption.
+ intros y Hxy.
f_equal.
assert (Heq1: h (class_of x) = h (class_of y)).
{ apply Huniqx. intro z. unfold class_of.
destruct (c (R x z)) eqn:Hxz.
- symmetry. apply Hc. apply -> Hc in Hxz. firstorder.
- destruct (c (R y z)) eqn:Hyz.
+ apply -> Hc in Hyz. rewrite <- Hxz. apply Hc. firstorder.
+ easy. }
assert (Heq2:rew Heq1 in Hisclass x = Hisclass y).
{ apply proof_irrelevance_cci, EM. }
unfold f'.
rewrite <- Heq2.
rewrite <- Heq1.
reflexivity.
Qed.
Theorem setoid_functional_choice_first_characterization :
FunctionalChoice /\ ExtensionalFunctionRepresentative /\ ExcludedMiddle <-> SetoidFunctionalChoice.
Proof.
split.
- intros (FunChoice & SetoidFunRepr & EM).
apply functional_rel_reification_and_repr_fun_choice_imp_setoid_fun_choice.
+ intros A B. apply fun_choice_imp_functional_rel_reification, FunChoice.
+ now apply fun_choice_and_ext_functions_repr_and_excluded_middle_imp_setoid_fun_choice.
- intro SetoidFunChoice. repeat split.
+ now intros A B; apply setoid_fun_choice_imp_fun_choice.
+ apply repr_fun_choice_imp_ext_function_repr.
now apply setoid_fun_choice_imp_repr_fun_choice.
+ apply repr_fun_choice_imp_excluded_middle.
now apply setoid_fun_choice_imp_repr_fun_choice.
Qed.
(**********************************************************************)
(** ** AC_fun_setoid = AC_fun + Ext_pred_repr + PI *)
(** Note: all ingredients have a computational meaning when taken in
separation. However, to compute with the functional choice,
existential quantification has to be thought as a strong
existential, which is incompatible with proof-irrelevance which
requires existential quantification to be truncated *)
Theorem fun_choice_and_ext_pred_ext_and_proof_irrel_imp_setoid_fun_choice :
FunctionalChoice -> ExtensionalPredicateRepresentative -> ProofIrrelevance -> RepresentativeFunctionalChoice.
Proof.
intros FunChoice PredExtRepr PI A R (Hrefl,Hsym,Htrans).
pose (isclass P := exists x:A, P x).
pose (class := {P:A -> Prop | isclass P}).
pose (contains (c:class) (a:A) := proj1_sig c a).
pose (class_of a := R a).
destruct (FunChoice class A contains) as (f,Hf).
- intros c. apply proj2_sig.
- destruct (PredExtRepr A) as (h,Hh).
assert (Hisclass:forall a, isclass (h (class_of a))).
{ intro a. exists a. destruct (Hh (class_of a)) as (Ha,Huniqa).
rewrite <- Ha; apply Hrefl. }
pose (f':= fun a => exist _ (h (class_of a)) (Hisclass a) : class).
exists (fun a => f (f' a)).
intros x. destruct (Hh (class_of x)) as (Hx,Huniqx). split.
+ specialize Hf with (f' x). simpl in Hf. rewrite <- Hx in Hf. assumption.
+ intros y Hxy.
f_equal.
assert (Heq1: h (class_of x) = h (class_of y)).
{ apply Huniqx. intro z. unfold class_of. firstorder. }
assert (Heq2:rew Heq1 in Hisclass x = Hisclass y).
{ apply PI. }
unfold f'.
rewrite <- Heq2.
rewrite <- Heq1.
reflexivity.
Qed.
Theorem setoid_functional_choice_second_characterization :
FunctionalChoice /\ ExtensionalPredicateRepresentative /\ ProofIrrelevance <-> SetoidFunctionalChoice.
Proof.
split.
- intros (FunChoice & ExtPredRepr & PI).
apply functional_rel_reification_and_repr_fun_choice_imp_setoid_fun_choice.
+ intros A B. now apply fun_choice_imp_functional_rel_reification.
+ now apply fun_choice_and_ext_pred_ext_and_proof_irrel_imp_setoid_fun_choice.
- intro SetoidFunChoice. repeat split.
+ now intros A B; apply setoid_fun_choice_imp_fun_choice.
+ apply repr_fun_choice_imp_ext_pred_repr.
now apply setoid_fun_choice_imp_repr_fun_choice.
+ red. apply proof_irrelevance_cci.
apply repr_fun_choice_imp_excluded_middle.
now apply setoid_fun_choice_imp_repr_fun_choice.
Qed.
(**********************************************************************)
(** * Compatibility notations *)
Notation description_rel_choice_imp_funct_choice :=
functional_rel_reification_and_rel_choice_imp_fun_choice (only parsing).
Notation funct_choice_imp_rel_choice := fun_choice_imp_rel_choice (only parsing).
Notation FunChoice_Equiv_RelChoice_and_ParamDefinDescr :=
fun_choice_iff_rel_choice_and_functional_rel_reification (only parsing).
Notation funct_choice_imp_description := fun_choice_imp_functional_rel_reification (only parsing).
|