aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Lists/StreamMemo.v
blob: 67882cde55c3b7900fab2f18b97d496e678a6e06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Eqdep_dec.
Require Import Streams.

(** * Memoization *)

(** Successive outputs of a given function [f] are stored in
    a stream in order to avoid duplicated computations. *)

Section MemoFunction.

Variable A: Type.
Variable f: nat -> A.

CoFixpoint memo_make (n:nat) : Stream A := Cons (f n) (memo_make (S n)).

Definition memo_list := memo_make 0.

Fixpoint memo_get (n:nat) (l:Stream A) : A :=
  match n with
    | O => hd l
    | S n1 => memo_get n1 (tl l)
  end.

Theorem memo_get_correct: forall n, memo_get n memo_list = f n.
Proof.
assert (F1: forall n m, memo_get n (memo_make m) = f (n + m)).
{ induction n as [| n Hrec]; try (intros m; reflexivity).
  intros m; simpl; rewrite Hrec.
  rewrite plus_n_Sm; auto. }
intros n; transitivity (f (n + 0)); try exact (F1 n 0).
rewrite <- plus_n_O; auto.
Qed.

(** Building with possible sharing using a iterator [g] :
    We now suppose in addition that [f n] is in fact the [n]-th
    iterate of a function [g].
*)

Variable g: A -> A.

Hypothesis Hg_correct: forall n, f (S n) = g (f n).

CoFixpoint imemo_make (fn:A) : Stream A :=
  let fn1 := g fn in
  Cons fn1 (imemo_make fn1).

Definition imemo_list := let f0 := f 0 in
  Cons f0 (imemo_make f0).

Theorem imemo_get_correct: forall n, memo_get n imemo_list = f n.
Proof.
assert (F1: forall n m, memo_get n (imemo_make (f m)) = f (S (n + m))).
{ induction n as [| n Hrec]; try (intros m; exact (eq_sym (Hg_correct m))).
  simpl; intros m; rewrite <- Hg_correct, Hrec, <- plus_n_Sm; auto. }
destruct n as [| n]; try reflexivity.
unfold imemo_list; simpl; rewrite F1.
rewrite <- plus_n_O; auto.
Qed.

End MemoFunction.

(** For a dependent function, the previous solution is
    reused thanks to a temporarly hiding of the dependency
    in a "container" [memo_val]. *)

Section DependentMemoFunction.

Variable A: nat -> Type.
Variable f: forall n, A n.

Inductive memo_val: Type :=
  memo_mval: forall n, A n -> memo_val.

Fixpoint is_eq (n m : nat) : {n = m} + {True} :=
  match n, m return {n = m} + {True} with
  | 0, 0 =>left True (eq_refl 0)
  | 0, S m1 => right (0 = S m1) I
  | S n1, 0 => right (S n1 = 0) I
  | S n1, S m1 =>
     match is_eq n1 m1 with
     | left H => left True (f_equal S H)
     | right _ => right (S n1 = S m1) I
     end
  end.

Definition memo_get_val n (v: memo_val): A n :=
match v with
| memo_mval m x =>
    match is_eq n m with
    | left H =>
       match H in (eq _ y) return (A y -> A n) with
        | eq_refl => fun v1 : A n => v1
       end
    | right _ => fun _ : A m => f n
    end x
end.

Let mf n :=  memo_mval n (f n).

Definition dmemo_list := memo_list _ mf.

Definition dmemo_get n l := memo_get_val n (memo_get _ n l).

Theorem dmemo_get_correct: forall n, dmemo_get n dmemo_list = f n.
Proof.
intros n; unfold dmemo_get, dmemo_list.
rewrite (memo_get_correct memo_val mf n); simpl.
case (is_eq n n); simpl; auto; intros e.
assert (e = eq_refl n).
 apply eq_proofs_unicity.
 induction x as [| x Hx]; destruct y as [| y].
 left; auto.
 right; intros HH; discriminate HH.
 right; intros HH; discriminate HH.
 case (Hx y).
   intros HH; left; case HH; auto.
 intros HH; right; intros HH1; case HH.
 injection HH1; auto.
rewrite H; auto.
Qed.

(** Finally, a version with both dependency and iterator *)

Variable g: forall n, A n -> A (S n).

Hypothesis Hg_correct: forall n, f (S n) = g n (f n).

Let mg v :=  match v with
             memo_mval n1 v1 => memo_mval (S n1) (g n1 v1) end.

Definition dimemo_list := imemo_list _ mf mg.

Theorem dimemo_get_correct: forall n, dmemo_get n dimemo_list = f n.
Proof.
intros n; unfold dmemo_get, dimemo_list.
rewrite (imemo_get_correct memo_val mf mg); simpl.
case (is_eq n n); simpl; auto; intros e.
assert (e = eq_refl n).
 apply eq_proofs_unicity.
 induction x as [| x Hx]; destruct y as [| y].
 left; auto.
 right; intros HH; discriminate HH.
 right; intros HH; discriminate HH.
 case (Hx y).
   intros HH; left; case HH; auto.
 intros HH; right; intros HH1; case HH.
 injection HH1; auto.
rewrite H; auto.
intros n1; unfold mf; rewrite Hg_correct; auto.
Qed.

End DependentMemoFunction.

(** An example with the memo function on factorial *)

(*
Require Import ZArith.
Open Scope Z_scope.

Fixpoint tfact (n: nat) :=
  match n with
   | O => 1
   | S n1 => Z.of_nat n * tfact n1
  end.

Definition lfact_list :=
  dimemo_list _ tfact (fun n z => (Z.of_nat (S  n) * z)).

Definition lfact n := dmemo_get _ tfact n lfact_list.

Theorem lfact_correct n: lfact n = tfact n.
Proof.
intros n; unfold lfact, lfact_list.
rewrite dimemo_get_correct; auto.
Qed.

Fixpoint nop p :=
  match p with
   | xH => 0
   | xI p1 => nop p1
   | xO p1 => nop p1
  end.

Fixpoint test z :=
  match z with
   | Z0 => 0
   | Zpos p1 => nop p1
   | Zneg p1 => nop p1
  end.

Time Eval vm_compute in test (lfact 2000).
Time Eval vm_compute in test (lfact 2000).
Time Eval vm_compute in test (lfact 1500).
Time Eval vm_compute in (lfact 1500).
*)