aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Lists/SetoidList.v
blob: 0c5fe55b27e98631058310cb46f15e0d18508594 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Export List.
Require Export Sorted.
Require Export Setoid Basics Morphisms.
Set Implicit Arguments.
Unset Strict Implicit.
(* Set Universe Polymorphism. *)
(** * Logical relations over lists with respect to a setoid equality
      or ordering. *)

(** This can be seen as a complement of predicate [lelistA] and [sort]
    found in [Sorting]. *)

Section Type_with_equality.
Variable A : Type.
Variable eqA : A -> A -> Prop.

(** Being in a list modulo an equality relation over type [A]. *)

Inductive InA (x : A) : list A -> Prop :=
  | InA_cons_hd : forall y l, eqA x y -> InA x (y :: l)
  | InA_cons_tl : forall y l, InA x l -> InA x (y :: l).

Hint Constructors InA.

(** TODO: it would be nice to have a generic definition instead
    of the previous one. Having [InA = Exists eqA] raises too
    many compatibility issues. For now, we only state the equivalence: *)

Lemma InA_altdef : forall x l, InA x l <-> Exists (eqA x) l. 
Proof. split; induction 1; auto. Qed.

Lemma InA_cons : forall x y l, InA x (y::l) <-> eqA x y \/ InA x l.
Proof.
 intuition. invlist InA; auto.
Qed.

Lemma InA_nil : forall x, InA x nil <-> False.
Proof.
 intuition. invlist InA.
Qed.

(** An alternative definition of [InA]. *)

Lemma InA_alt : forall x l, InA x l <-> exists y, eqA x y /\ In y l.
Proof.
 intros; rewrite InA_altdef, Exists_exists; firstorder.
Qed.

(** A list without redundancy modulo the equality over [A]. *)

Inductive NoDupA : list A -> Prop :=
  | NoDupA_nil : NoDupA nil
  | NoDupA_cons : forall x l, ~ InA x l -> NoDupA l -> NoDupA (x::l).

Hint Constructors NoDupA.

(** An alternative definition of [NoDupA] based on [ForallOrdPairs] *)

Lemma NoDupA_altdef : forall l,
 NoDupA l <-> ForallOrdPairs (complement eqA) l.
Proof.
 split; induction 1; constructor; auto.
 rewrite Forall_forall. intros b Hb.
 intro Eq; elim H. rewrite InA_alt. exists b; auto.
 rewrite InA_alt; intros (a' & Haa' & Ha').
 rewrite Forall_forall in H. exact (H a' Ha' Haa').
Qed.


(** lists with same elements modulo [eqA] *)

Definition inclA l l' := forall x, InA x l -> InA x l'.
Definition equivlistA l l' := forall x, InA x l <-> InA x l'.

Lemma incl_nil l : inclA nil l.
Proof. intro. intros. inversion H. Qed.
Hint Resolve incl_nil : list.

(** lists with same elements modulo [eqA] at the same place *)

Inductive eqlistA : list A -> list A -> Prop :=
  | eqlistA_nil : eqlistA nil nil
  | eqlistA_cons : forall x x' l l',
      eqA x x' -> eqlistA l l' -> eqlistA (x::l) (x'::l').

Hint Constructors eqlistA.

(** We could also have written [eqlistA = Forall2 eqA]. *)

Lemma eqlistA_altdef : forall l l', eqlistA l l' <-> Forall2 eqA l l'.
Proof. split; induction 1; auto. Qed.

(** Results concerning lists modulo [eqA] *)

Hypothesis eqA_equiv : Equivalence eqA.
Definition eqarefl := (@Equivalence_Reflexive _ _ eqA_equiv).
Definition eqatrans := (@Equivalence_Transitive _ _ eqA_equiv).
Definition eqasym := (@Equivalence_Symmetric _ _ eqA_equiv).
 
Hint Resolve eqarefl eqatrans.
Hint Immediate eqasym.

Ltac inv := invlist InA; invlist sort; invlist lelistA; invlist NoDupA.

(** First, the two notions [equivlistA] and [eqlistA] are indeed equivlances *)

Global Instance equivlist_equiv : Equivalence equivlistA.
Proof.
 firstorder.
Qed.

Global Instance eqlistA_equiv : Equivalence eqlistA.
Proof.
 constructor; red.
 induction x; auto.
 induction 1; auto.
 intros x y z H; revert z; induction H; auto.
 inversion 1; subst; auto. invlist eqlistA; eauto with *.
Qed.
(** Moreover, [eqlistA] implies [equivlistA]. A reverse result
    will be proved later for sorted list without duplicates. *)

Global Instance eqlistA_equivlistA : subrelation eqlistA equivlistA.
Proof.
  intros x x' H. induction H.
  intuition.
  red; intros.
  rewrite 2 InA_cons.
  rewrite (IHeqlistA x0), H; intuition.
Qed.

(** InA is compatible with eqA (for its first arg) and with
    equivlistA (and hence eqlistA) for its second arg *)

Global Instance InA_compat : Proper (eqA==>equivlistA==>iff) InA.
Proof.
 intros x x' Hxx' l l' Hll'. rewrite (Hll' x).
 rewrite 2 InA_alt; firstorder.
Qed.

(** For compatibility, an immediate consequence of [InA_compat] *)

Lemma InA_eqA : forall l x y, eqA x y -> InA x l -> InA y l.
Proof.
 intros l x y H H'. rewrite <- H. auto.
Qed.
Hint Immediate InA_eqA.

Lemma In_InA : forall l x, In x l -> InA x l.
Proof.
 simple induction l; simpl; intuition.
 subst; auto.
Qed.
Hint Resolve In_InA.

Lemma InA_split : forall l x, InA x l ->
 exists l1 y l2, eqA x y /\ l = l1++y::l2.
Proof.
induction l; intros; inv.
exists (@nil A); exists a; exists l; auto.
destruct (IHl x H0) as (l1,(y,(l2,(H1,H2)))).
exists (a::l1); exists y; exists l2; auto.
split; simpl; f_equal; auto.
Qed.

Lemma InA_app : forall l1 l2 x,
 InA x (l1 ++ l2) -> InA x l1 \/ InA x l2.
Proof.
 induction l1; simpl in *; intuition.
 inv; auto.
 elim (IHl1 l2 x H0); auto.
Qed.

Lemma InA_app_iff : forall l1 l2 x,
 InA x (l1 ++ l2) <-> InA x l1 \/ InA x l2.
Proof.
 split.
 apply InA_app.
 destruct 1; generalize H; do 2 rewrite InA_alt.
 destruct 1 as (y,(H1,H2)); exists y; split; auto.
 apply in_or_app; auto.
 destruct 1 as (y,(H1,H2)); exists y; split; auto.
 apply in_or_app; auto.
Qed.

Lemma InA_rev : forall p m,
 InA p (rev m) <-> InA p m.
Proof.
 intros; do 2 rewrite InA_alt.
 split; intros (y,H); exists y; intuition.
 rewrite In_rev; auto.
 rewrite <- In_rev; auto.
Qed.

(** Some more facts about InA *)

Lemma InA_singleton x y : InA x (y::nil) <-> eqA x y.
Proof.
 rewrite InA_cons, InA_nil; tauto.
Qed.

Lemma InA_double_head x y l :
 InA x (y :: y :: l) <-> InA x (y :: l).
Proof.
 rewrite !InA_cons; tauto.
Qed.

Lemma InA_permute_heads x y z l :
 InA x (y :: z :: l) <-> InA x (z :: y :: l).
Proof.
 rewrite !InA_cons; tauto.
Qed.

Lemma InA_app_idem x l : InA x (l ++ l) <-> InA x l.
Proof.
 rewrite InA_app_iff; tauto.
Qed.

Section NoDupA.

Lemma NoDupA_app : forall l l', NoDupA l -> NoDupA l' ->
  (forall x, InA x l -> InA x l' -> False) ->
  NoDupA (l++l').
Proof.
induction l; simpl; auto; intros.
inv.
constructor.
rewrite InA_alt; intros (y,(H4,H5)).
destruct (in_app_or _ _ _ H5).
elim H2.
rewrite InA_alt.
exists y; auto.
apply (H1 a).
auto.
rewrite InA_alt.
exists y; auto.
apply IHl; auto.
intros.
apply (H1 x); auto.
Qed.

Lemma NoDupA_rev : forall l, NoDupA l -> NoDupA (rev l).
Proof.
induction l.
simpl; auto.
simpl; intros.
inv.
apply NoDupA_app; auto.
constructor; auto.
intro; inv.
intros x.
rewrite InA_alt.
intros (x1,(H2,H3)).
intro; inv.
destruct H0.
rewrite <- H4, H2.
apply In_InA.
rewrite In_rev; auto.
Qed.

Lemma NoDupA_split : forall l l' x, NoDupA (l++x::l') -> NoDupA (l++l').
Proof.
 induction l; simpl in *; intros; inv; auto.
 constructor; eauto.
 contradict H0.
 rewrite InA_app_iff in *.
 rewrite InA_cons.
 intuition.
Qed.

Lemma NoDupA_swap : forall l l' x, NoDupA (l++x::l') -> NoDupA (x::l++l').
Proof.
 induction l; simpl in *; intros; inv; auto.
 constructor; eauto.
 assert (H2:=IHl _ _ H1).
 inv.
 rewrite InA_cons.
 red; destruct 1.
 apply H0.
 rewrite InA_app_iff in *; rewrite InA_cons; auto.
 apply H; auto.
 constructor.
 contradict H0.
 rewrite InA_app_iff in *; rewrite InA_cons; intuition.
 eapply NoDupA_split; eauto.
Qed.

Lemma NoDupA_singleton x : NoDupA (x::nil).
Proof.
 repeat constructor. inversion 1.
Qed.

End NoDupA.

Section EquivlistA.

Global Instance equivlistA_cons_proper:
 Proper (eqA ==> equivlistA ==> equivlistA) (@cons A).
Proof.
 intros ? ? E1 ? ? E2 ?; now rewrite !InA_cons, E1, E2.
Qed.

Global Instance equivlistA_app_proper:
 Proper (equivlistA ==> equivlistA ==> equivlistA) (@app A).
Proof.
 intros ? ? E1 ? ? E2 ?. now rewrite !InA_app_iff, E1, E2.
Qed.

Lemma equivlistA_cons_nil x l : ~ equivlistA (x :: l) nil.
Proof.
 intros E. now eapply InA_nil, E, InA_cons_hd.
Qed.

Lemma equivlistA_nil_eq l : equivlistA l nil -> l = nil.
Proof.
 destruct l.
 - trivial.
 - intros H. now apply equivlistA_cons_nil in H.
Qed.

Lemma equivlistA_double_head x l : equivlistA (x :: x :: l) (x :: l).
Proof.
 intro. apply InA_double_head.
Qed.

Lemma equivlistA_permute_heads x y l :
 equivlistA (x :: y :: l) (y :: x :: l).
Proof.
 intro. apply InA_permute_heads.
Qed.

Lemma equivlistA_app_idem l : equivlistA (l ++ l) l.
Proof.
 intro. apply InA_app_idem.
Qed.

Lemma equivlistA_NoDupA_split l l1 l2 x y : eqA x y ->
 NoDupA (x::l) -> NoDupA (l1++y::l2) ->
 equivlistA (x::l) (l1++y::l2) -> equivlistA l (l1++l2).
Proof.
 intros; intro a.
 generalize (H2 a).
 rewrite !InA_app_iff, !InA_cons.
 inv.
 assert (SW:=NoDupA_swap H1). inv.
 rewrite InA_app_iff in H0.
 split; intros.
 assert (~eqA a x) by (contradict H3; rewrite <- H3; auto).
 assert (~eqA a y) by (rewrite <- H; auto).
 tauto.
 assert (OR : eqA a x \/ InA a l) by intuition. clear H6.
 destruct OR as [EQN|INA]; auto.
 elim H0.
 rewrite <-H,<-EQN; auto.
Qed.

End EquivlistA.

Section Fold.

Variable B:Type.
Variable eqB:B->B->Prop.
Variable st:Equivalence eqB.
Variable f:A->B->B.
Variable i:B.
Variable Comp:Proper (eqA==>eqB==>eqB) f.

Lemma fold_right_eqlistA :
   forall s s', eqlistA s s' ->
   eqB (fold_right f i s) (fold_right f i s').
Proof.
induction 1; simpl; auto with relations.
apply Comp; auto.
Qed.

(** Fold with restricted [transpose] hypothesis. *)

Section Fold_With_Restriction.
Variable R : A -> A -> Prop.
Hypothesis R_sym : Symmetric R.
Hypothesis R_compat : Proper (eqA==>eqA==>iff) R.


(*

(** [ForallOrdPairs R] is compatible with [equivlistA] over the
    lists without duplicates, as long as the relation [R]
    is symmetric and compatible with [eqA]. To prove this fact,
    we use an auxiliary notion: "forall distinct pairs, ...".
*)

Definition ForallNeqPairs :=
 ForallPairs (fun a b => ~eqA a b -> R a b).

(** [ForallOrdPairs] and [ForallNeqPairs] are related, but not completely
    equivalent. For proving one implication, we need to know that the
    list has no duplicated elements... *)

Lemma ForallNeqPairs_ForallOrdPairs : forall l, NoDupA l ->
 ForallNeqPairs l -> ForallOrdPairs R l.
Proof.
 induction l; auto.
 constructor. inv.
 rewrite Forall_forall; intros b Hb.
 apply H0; simpl; auto.
 contradict H1; rewrite H1; auto.
 apply IHl.
 inv; auto.
 intros b c Hb Hc Hneq.
 apply H0; simpl; auto.
Qed.

(** ... and for proving the other implication, we need to be able
   to reverse relation [R]. *)

Lemma ForallOrdPairs_ForallNeqPairs : forall l,
 ForallOrdPairs R l -> ForallNeqPairs l.
Proof.
 intros l Hl x y Hx Hy N.
 destruct (ForallOrdPairs_In Hl x y Hx Hy) as [H|[H|H]].
 subst; elim N; auto.
 assumption.
 apply R_sym; assumption.
Qed.

*)

(** Compatibility of [ForallOrdPairs] with respect to [inclA]. *)

Lemma ForallOrdPairs_inclA : forall l l',
 NoDupA l' -> inclA l' l -> ForallOrdPairs R l -> ForallOrdPairs R l'.
Proof.
induction l' as [|x l' IH].
constructor.
intros ND Incl FOP. apply FOP_cons; inv; unfold inclA in *; auto.
rewrite Forall_forall; intros y Hy.
assert (Ix : InA x (x::l')) by (rewrite InA_cons; auto).
 apply Incl in Ix. rewrite InA_alt in Ix. destruct Ix as (x' & Hxx' & Hx').
assert (Iy : InA y (x::l')) by (apply In_InA; simpl; auto).
 apply Incl in Iy. rewrite InA_alt in Iy. destruct Iy as (y' & Hyy' & Hy').
rewrite Hxx', Hyy'.
destruct (ForallOrdPairs_In FOP x' y' Hx' Hy') as [E|[?|?]]; auto.
absurd (InA x l'); auto. rewrite Hxx', E, <- Hyy'; auto.
Qed.


(** Two-argument functions that allow to reorder their arguments. *)
Definition transpose (f : A -> B -> B) :=
  forall (x y : A) (z : B), eqB (f x (f y z)) (f y (f x z)).

(** A version of transpose with restriction on where it should hold *)
Definition transpose_restr (R : A -> A -> Prop)(f : A -> B -> B) :=
  forall (x y : A) (z : B), R x y -> eqB (f x (f y z)) (f y (f x z)).

Variable TraR :transpose_restr R f.

Lemma fold_right_commutes_restr :
  forall s1 s2 x, ForallOrdPairs R (s1++x::s2) ->
  eqB (fold_right f i (s1++x::s2)) (f x (fold_right f i (s1++s2))).
Proof.
induction s1; simpl; auto; intros.
reflexivity.
transitivity (f a (f x (fold_right f i (s1++s2)))).
apply Comp; auto.
apply IHs1.
invlist ForallOrdPairs; auto.
apply TraR.
invlist ForallOrdPairs; auto.
rewrite Forall_forall in H0; apply H0.
apply in_or_app; simpl; auto.
Qed.

Lemma fold_right_equivlistA_restr :
  forall s s', NoDupA s -> NoDupA s' -> ForallOrdPairs R s ->
  equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
Proof.
 simple induction s.
 destruct s'; simpl.
 intros; reflexivity.
 unfold equivlistA; intros.
 destruct (H2 a).
 assert (InA a nil) by auto; inv.
 intros x l Hrec s' N N' F E; simpl in *.
 assert (InA x s') by (rewrite <- (E x); auto).
 destruct (InA_split H) as (s1,(y,(s2,(H1,H2)))).
 subst s'.
 transitivity (f x (fold_right f i (s1++s2))).
 apply Comp; auto.
 apply Hrec; auto.
 inv; auto.
 eapply NoDupA_split; eauto.
 invlist ForallOrdPairs; auto. 
 eapply equivlistA_NoDupA_split; eauto.
 transitivity (f y (fold_right f i (s1++s2))).
 apply Comp; auto. reflexivity.
 symmetry; apply fold_right_commutes_restr.
 apply ForallOrdPairs_inclA with (x::l); auto.
  red; intros; rewrite E; auto.
Qed.

Lemma fold_right_add_restr :
  forall s' s x, NoDupA s -> NoDupA s' -> ForallOrdPairs R s' -> ~ InA x s ->
  equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f i s)).
Proof.
 intros; apply (@fold_right_equivlistA_restr s' (x::s)); auto.
Qed.

End Fold_With_Restriction.

(** we now state similar results, but without restriction on transpose. *)

Variable Tra :transpose f.

Lemma fold_right_commutes : forall s1 s2 x,
  eqB (fold_right f i (s1++x::s2)) (f x (fold_right f i (s1++s2))).
Proof.
induction s1; simpl; auto; intros.
reflexivity.
transitivity (f a (f x (fold_right f i (s1++s2)))); auto.
apply Comp; auto.
Qed.

Lemma fold_right_equivlistA :
  forall s s', NoDupA s -> NoDupA s' ->
  equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
Proof.
intros; apply fold_right_equivlistA_restr with (R:=fun _ _ => True);
 repeat red; auto.
apply ForallPairs_ForallOrdPairs; try red; auto.
Qed.

Lemma fold_right_add :
  forall s' s x, NoDupA s -> NoDupA s' -> ~ InA x s ->
  equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f i s)).
Proof.
 intros; apply (@fold_right_equivlistA s' (x::s)); auto.
Qed.

End Fold.


Section Fold2.

Variable B:Type.
Variable eqB:B->B->Prop.
Variable st:Equivalence eqB.
Variable f:A->B->B.
Variable Comp:Proper (eqA==>eqB==>eqB) f.


Lemma fold_right_eqlistA2 :
  forall s s' (i j:B) (heqij: eqB i j) (heqss': eqlistA s s'),
  eqB (fold_right f i s) (fold_right f j s').
Proof.
  intros s.
  induction s;intros.
  - inversion heqss'.
    subst.
    simpl.
    assumption.
  - inversion heqss'.
    subst.
    simpl.
    apply Comp.
    + assumption.
    + apply IHs;assumption.
Qed.

Section Fold2_With_Restriction.

Variable R : A -> A -> Prop.
Hypothesis R_sym : Symmetric R.
Hypothesis R_compat : Proper (eqA==>eqA==>iff) R.

(** Two-argument functions that allow to reorder their arguments. *)
Definition transpose2 (f : A -> B -> B) :=
  forall (x y : A) (z z': B), eqB z z' -> eqB (f x (f y z)) (f y (f x z')).

(** A version of transpose with restriction on where it should hold *)
Definition transpose_restr2 (R : A -> A -> Prop)(f : A -> B -> B) :=
  forall (x y : A) (z z': B), R x y -> eqB z z' -> eqB (f x (f y z)) (f y (f x z')).

Variable TraR :transpose_restr2 R f.

Lemma fold_right_commutes_restr2 :
  forall s1 s2 x (i j:B) (heqij: eqB i j), ForallOrdPairs R (s1++x::s2) ->
  eqB (fold_right f i (s1++x::s2)) (f x (fold_right f j (s1++s2))).
Proof.
induction s1; simpl; auto; intros.
- apply Comp.
  + destruct eqA_equiv. apply Equivalence_Reflexive.
  + eapply fold_right_eqlistA2.
    * assumption.
    * reflexivity.
- transitivity (f a (f x (fold_right f j (s1++s2)))).
  apply Comp; auto.
  eapply IHs1.
  assumption.
  invlist ForallOrdPairs; auto.
  apply TraR.
  invlist ForallOrdPairs; auto.
  rewrite Forall_forall in H0; apply H0.
  apply in_or_app; simpl; auto.
  reflexivity.
Qed.

Lemma fold_right_equivlistA_restr2 :
  forall s s' i j,
    NoDupA s -> NoDupA s' -> ForallOrdPairs R s ->
    equivlistA s s' -> eqB i j ->
    eqB (fold_right f i s) (fold_right f j s').
Proof.
 simple induction s.
 destruct s'; simpl.
 intros. assumption.
 unfold equivlistA; intros.
 destruct (H2 a).
 assert (InA a nil) by auto; inv.
 intros x l Hrec s' i j N N' F E eqij; simpl in *.
 assert (InA x s') by (rewrite <- (E x); auto).
 destruct (InA_split H) as (s1,(y,(s2,(H1,H2)))).
 subst s'.
 transitivity (f x (fold_right f j (s1++s2))).
 - apply Comp; auto.
   apply Hrec; auto.
   inv; auto.
   eapply NoDupA_split; eauto.
   invlist ForallOrdPairs; auto.
   eapply equivlistA_NoDupA_split; eauto.
 - transitivity (f y (fold_right f i (s1++s2))).
   + apply Comp; auto.
     symmetry.
     apply fold_right_eqlistA2.
     * assumption.
     * reflexivity.
   + symmetry.
     apply fold_right_commutes_restr2.
     symmetry.
     assumption.
     apply ForallOrdPairs_inclA with (x::l); auto.
     red; intros; rewrite E; auto.
Qed.

Lemma fold_right_add_restr2 :
  forall s' s i j x, NoDupA s -> NoDupA s' -> eqB i j -> ForallOrdPairs R s' -> ~ InA x s ->
  equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f j s)).
Proof.
 intros; apply (@fold_right_equivlistA_restr2 s' (x::s) i j); auto.
Qed.

End Fold2_With_Restriction.

Variable Tra :transpose2 f.

Lemma fold_right_commutes2 : forall s1 s2 i x x',
  eqA x x' -> 
  eqB (fold_right f i (s1++x::s2)) (f x' (fold_right f i (s1++s2))).
Proof.
  induction s1;simpl;intros.
- apply Comp;auto.
  reflexivity.
- transitivity (f a (f x' (fold_right f i (s1++s2)))); auto.
  + apply Comp;auto.
  + apply Tra.
    reflexivity.
Qed.

Lemma fold_right_equivlistA2 :
  forall s s' i j, NoDupA s -> NoDupA s' -> eqB i j ->
  equivlistA s s' -> eqB (fold_right f i s) (fold_right f j s').
Proof.
red in Tra.
intros; apply fold_right_equivlistA_restr2 with (R:=fun _ _ => True);
repeat red; auto.
apply ForallPairs_ForallOrdPairs; try red; auto.
Qed.

Lemma fold_right_add2 :
  forall s' s i j x, NoDupA s -> NoDupA s' -> eqB i j -> ~ InA x s ->
  equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f j s)).
Proof.
 intros.
 replace (f x (fold_right f j s)) with (fold_right f j (x::s)) by auto.
 eapply fold_right_equivlistA2;auto. 
Qed.

End Fold2.

Section Remove.

Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.

Lemma InA_dec : forall x l, { InA x l } + { ~ InA x l }.
Proof.
induction l.
right; auto.
intro; inv.
destruct (eqA_dec x a).
left; auto.
destruct IHl.
left; auto.
right; intro; inv; contradiction.
Defined.

Fixpoint removeA (x : A) (l : list A) : list A :=
  match l with
    | nil => nil
    | y::tl => if (eqA_dec x y) then removeA x tl else y::(removeA x tl)
  end.

Lemma removeA_filter : forall x l,
  removeA x l = filter (fun y => if eqA_dec x y then false else true) l.
Proof.
induction l; simpl; auto.
destruct (eqA_dec x a); auto.
rewrite IHl; auto.
Qed.

Lemma removeA_InA : forall l x y, InA y (removeA x l) <-> InA y l /\ ~eqA x y.
Proof.
induction l; simpl; auto.
split.
intro; inv.
destruct 1; inv.
intros.
destruct (eqA_dec x a) as [Heq|Hnot]; simpl; auto.
rewrite IHl; split; destruct 1; split; auto.
inv; auto.
destruct H0; transitivity a; auto.
split.
intro; inv.
split; auto.
contradict Hnot.
transitivity y; auto.
rewrite (IHl x y) in H0; destruct H0; auto.
destruct 1; inv; auto.
right; rewrite IHl; auto.
Qed.

Lemma removeA_NoDupA :
  forall s x, NoDupA s ->  NoDupA (removeA x s).
Proof.
simple induction s; simpl; intros.
auto.
inv.
destruct (eqA_dec x a); simpl; auto.
constructor; auto.
rewrite removeA_InA.
intuition.
Qed.

Lemma removeA_equivlistA : forall l l' x,
  ~InA x l -> equivlistA (x :: l) l' -> equivlistA l (removeA x l').
Proof.
unfold equivlistA; intros.
rewrite removeA_InA.
split; intros.
rewrite <- H0; split; auto.
contradict H.
apply InA_eqA with x0; auto.
rewrite <- (H0 x0) in H1.
destruct H1.
inv; auto.
elim H2; auto.
Qed.

End Remove.



(** Results concerning lists modulo [eqA] and [ltA] *)

Variable ltA : A -> A -> Prop.
Hypothesis ltA_strorder : StrictOrder ltA.
Hypothesis ltA_compat : Proper (eqA==>eqA==>iff) ltA.

Let sotrans := (@StrictOrder_Transitive _ _ ltA_strorder).

Hint Resolve sotrans.

Notation InfA:=(lelistA ltA).
Notation SortA:=(sort ltA).

Hint Constructors lelistA sort.

Lemma InfA_ltA :
 forall l x y, ltA x y -> InfA y l -> InfA x l.
Proof.
 destruct l; constructor. inv; eauto.
Qed.

Global Instance InfA_compat : Proper (eqA==>eqlistA==>iff) InfA.
Proof using eqA_equiv ltA_compat. (* and not ltA_strorder *)
 intros x x' Hxx' l l' Hll'.
 inversion_clear Hll'.
 intuition.
 split; intro; inv; constructor.
 rewrite <- Hxx', <- H; auto.
 rewrite Hxx', H; auto.
Qed.

(** For compatibility, can be deduced from [InfA_compat] *)
Lemma InfA_eqA l x y : eqA x y -> InfA y l -> InfA x l.
Proof using eqA_equiv ltA_compat.
 intros H; now rewrite H.
Qed.
Hint Immediate InfA_ltA InfA_eqA.

Lemma SortA_InfA_InA :
 forall l x a, SortA l -> InfA a l -> InA x l -> ltA a x.
Proof.
 simple induction l.
 intros. inv.
 intros. inv.
 setoid_replace x with a; auto.
 eauto.
Qed.

Lemma In_InfA :
 forall l x, (forall y, In y l -> ltA x y) -> InfA x l.
Proof.
 simple induction l; simpl; intros; constructor; auto.
Qed.

Lemma InA_InfA :
 forall l x, (forall y, InA y l -> ltA x y) -> InfA x l.
Proof.
 simple induction l; simpl; intros; constructor; auto.
Qed.

(* In fact, this may be used as an alternative definition for InfA: *)

Lemma InfA_alt :
 forall l x, SortA l -> (InfA x l <-> (forall y, InA y l -> ltA x y)).
Proof.
split.
intros; eapply SortA_InfA_InA; eauto.
apply InA_InfA.
Qed.

Lemma InfA_app : forall l1 l2 a, InfA a l1 -> InfA a l2 -> InfA a (l1++l2).
Proof.
 induction l1; simpl; auto.
 intros; inv; auto.
Qed.

Lemma SortA_app :
 forall l1 l2, SortA l1 -> SortA l2 ->
 (forall x y, InA x l1 -> InA y l2 -> ltA x y) ->
 SortA (l1 ++ l2).
Proof.
 induction l1; simpl in *; intuition.
 inv.
 constructor; auto.
 apply InfA_app; auto.
 destruct l2; auto.
Qed.

Lemma SortA_NoDupA : forall l, SortA l -> NoDupA l.
Proof.
 simple induction l; auto.
 intros x l' H H0.
 inv.
 constructor; auto.
 intro.
 apply (StrictOrder_Irreflexive x).
 eapply SortA_InfA_InA; eauto.
Qed.


(** Some results about [eqlistA] *)

Section EqlistA.

Lemma eqlistA_length : forall l l', eqlistA l l' -> length l = length l'.
Proof.
induction 1; auto; simpl; congruence.
Qed.

Global Instance app_eqlistA_compat :
 Proper (eqlistA==>eqlistA==>eqlistA) (@app A).
Proof.
 repeat red; induction 1; simpl; auto.
Qed.

(** For compatibility, can be deduced from app_eqlistA_compat **)
Lemma eqlistA_app : forall l1 l1' l2 l2',
   eqlistA l1 l1' -> eqlistA l2 l2' -> eqlistA (l1++l2) (l1'++l2').
Proof.
intros l1 l1' l2 l2' H H'; rewrite H, H'; reflexivity.
Qed.

Lemma eqlistA_rev_app : forall l1 l1',
   eqlistA l1 l1' -> forall l2 l2', eqlistA l2 l2' ->
   eqlistA ((rev l1)++l2) ((rev l1')++l2').
Proof.
induction 1; auto.
simpl; intros.
do 2 rewrite app_ass; simpl; auto.
Qed.

Global Instance rev_eqlistA_compat : Proper (eqlistA==>eqlistA) (@rev A).
Proof.
repeat red. intros.
rewrite <- (app_nil_r (rev x)), <- (app_nil_r (rev y)).
apply eqlistA_rev_app; auto.
Qed.

Lemma eqlistA_rev : forall l1 l1',
   eqlistA l1 l1' -> eqlistA (rev l1) (rev l1').
Proof.
apply rev_eqlistA_compat.
Qed.

Lemma SortA_equivlistA_eqlistA : forall l l',
   SortA l -> SortA l' -> equivlistA l l' -> eqlistA l l'.
Proof.
induction l; destruct l'; simpl; intros; auto.
destruct (H1 a); assert (InA a nil) by auto; inv.
destruct (H1 a); assert (InA a nil) by auto; inv.
inv.
assert (forall y, InA y l -> ltA a y).
intros; eapply SortA_InfA_InA with (l:=l); eauto.
assert (forall y, InA y l' -> ltA a0 y).
intros; eapply SortA_InfA_InA with (l:=l'); eauto.
clear H3 H4.
assert (eqA a a0).
 destruct (H1 a).
 destruct (H1 a0).
 assert (InA a (a0::l')) by auto. inv; auto.
 assert (InA a0 (a::l)) by auto. inv; auto.
 elim (StrictOrder_Irreflexive a); eauto.
constructor; auto.
apply IHl; auto.
split; intros.
destruct (H1 x).
assert (InA x (a0::l')) by auto. inv; auto.
rewrite H9,<-H3 in H4. elim (StrictOrder_Irreflexive a); eauto.
destruct (H1 x).
assert (InA x (a::l)) by auto. inv; auto.
rewrite H9,H3 in H4. elim (StrictOrder_Irreflexive a0); eauto.
Qed.

End EqlistA.

(** A few things about [filter] *)

Section Filter.

Lemma filter_sort : forall f l, SortA l -> SortA (List.filter f l).
Proof.
induction l; simpl; auto.
intros; inv; auto.
destruct (f a); auto.
constructor; auto.
apply In_InfA; auto.
intros.
rewrite filter_In in H; destruct H.
eapply SortA_InfA_InA; eauto.
Qed.
Arguments eq {A} x _.

Lemma filter_InA : forall f, Proper (eqA==>eq) f ->
 forall l x, InA x (List.filter f l) <-> InA x l /\ f x = true.
Proof.
clear sotrans ltA ltA_strorder ltA_compat.
intros; do 2 rewrite InA_alt; intuition.
destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; exists y; intuition.
destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; intuition.
  rewrite (H _ _ H0); auto.
destruct H1 as (y,(H0,H1)); exists y; rewrite filter_In; intuition.
  rewrite <- (H _ _ H0); auto.
Qed.

Lemma filter_split :
 forall f, (forall x y, f x = true -> f y = false -> ltA x y) ->
 forall l, SortA l -> l = filter f l ++ filter (fun x=>negb (f x)) l.
Proof.
induction l; simpl; intros; auto.
inv.
rewrite IHl at 1; auto.
case_eq (f a); simpl; intros; auto.
assert (forall e, In e l -> f e = false).
  intros.
  assert (H4:=SortA_InfA_InA H1 H2 (In_InA H3)).
  case_eq (f e); simpl; intros; auto.
  elim (StrictOrder_Irreflexive e).
  transitivity a; auto.
replace (List.filter f l) with (@nil A); auto.
generalize H3; clear; induction l; simpl; auto.
case_eq (f a); auto; intros.
rewrite H3 in H; auto; try discriminate.
Qed.

End Filter.
End Type_with_equality.

Hint Constructors InA eqlistA NoDupA sort lelistA.

Arguments equivlistA_cons_nil {A} eqA {eqA_equiv} x l _.
Arguments equivlistA_nil_eq {A} eqA {eqA_equiv} l _.

Section Find.

Variable A B : Type.
Variable eqA : A -> A -> Prop.
Hypothesis eqA_equiv : Equivalence eqA.
Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.

Fixpoint findA (f : A -> bool) (l:list (A*B)) : option B :=
 match l with
  | nil => None
  | (a,b)::l => if f a then Some b else findA f l
 end.

Lemma findA_NoDupA :
 forall l a b,
 NoDupA (fun p p' => eqA (fst p) (fst p')) l ->
 (InA (fun p p' => eqA (fst p) (fst p') /\ snd p = snd p') (a,b) l <->
  findA (fun a' => if eqA_dec a a' then true else false) l = Some b).
Proof.
set (eqk := fun p p' : A*B => eqA (fst p) (fst p')).
set (eqke := fun p p' : A*B => eqA (fst p) (fst p') /\ snd p = snd p').
induction l; intros; simpl.
split; intros; try discriminate.
invlist InA.
destruct a as (a',b'); rename a0 into a.
invlist NoDupA.
split; intros.
invlist InA.
compute in H2; destruct H2. subst b'.
destruct (eqA_dec a a'); intuition.
destruct (eqA_dec a a') as [HeqA|]; simpl.
contradict H0.
revert HeqA H2; clear - eqA_equiv.
induction l.
intros; invlist InA.
intros; invlist InA; auto.
destruct a0.
compute in H; destruct H.
subst b.
left; auto.
compute.
transitivity a; auto. symmetry; auto.
rewrite <- IHl; auto.
destruct (eqA_dec a a'); simpl in *.
left; split; simpl; congruence.
right. rewrite IHl; auto.
Qed.

End Find.

(** Compatibility aliases. [Proper] is rather to be used directly now.*)

Definition compat_bool {A} (eqA:A->A->Prop)(f:A->bool) :=
 Proper (eqA==>Logic.eq) f.

Definition compat_nat {A} (eqA:A->A->Prop)(f:A->nat) :=
 Proper (eqA==>Logic.eq) f.

Definition compat_P {A} (eqA:A->A->Prop)(P:A->Prop) :=
 Proper (eqA==>impl) P.

Definition compat_op {A B} (eqA:A->A->Prop)(eqB:B->B->Prop)(f:A->B->B) :=
 Proper (eqA==>eqB==>eqB) f.