1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(*i $Id$ i*)
Require Le.
Section Lists.
Variable A : Set.
Set Implicit Arguments.
Inductive list : Set := nil : list | cons : A -> list -> list.
Infix "::" cons (at level 7, right associativity) : list_scope
V8only (at level 60, right associativity).
Open Scope list_scope.
(*************************)
(** Discrimination *)
(*************************)
Lemma nil_cons : (a:A)(m:list)~(nil=(cons a m)).
Proof.
Intros; Discriminate.
Qed.
(*************************)
(** Concatenation *)
(*************************)
Fixpoint app [l:list] : list -> list
:= [m:list]Cases l of
nil => m
| (cons a l1) => (cons a (app l1 m))
end.
Infix RIGHTA 7 "^" app : list_scope
V8only RIGHTA 60 "++".
Lemma app_nil_end : (l:list)l=(l^nil).
Proof.
NewInduction l ; Simpl ; Auto.
Rewrite <- IHl; Auto.
Qed.
Hints Resolve app_nil_end.
Tactic Definition now_show c := Change c.
V7only [Tactic Definition NowShow := now_show.].
Lemma app_ass : (l,m,n : list)((l^m)^ n)=(l^(m^n)).
Proof.
Intros. NewInduction l ; Simpl ; Auto.
NowShow '(cons a (app (app l m) n))=(cons a (app l (app m n))).
Rewrite <- IHl; Auto.
Qed.
Hints Resolve app_ass.
Lemma ass_app : (l,m,n : list)(l^(m^n))=((l^m)^n).
Proof.
Auto.
Qed.
Hints Resolve ass_app.
Lemma app_comm_cons : (x,y:list)(a:A) (cons a (x^y))=((cons a x)^y).
Proof.
Auto.
Qed.
Lemma app_eq_nil: (x,y:list) (x^y)=nil -> x=nil /\ y=nil.
Proof.
NewDestruct x;NewDestruct y;Simpl;Auto.
Intros H;Discriminate H.
Intros;Discriminate H.
Qed.
Lemma app_cons_not_nil: (x,y:list)(a:A)~nil=(x^(cons a y)).
Proof.
Unfold not .
NewDestruct x;Simpl;Intros.
Discriminate H.
Discriminate H.
Qed.
Lemma app_eq_unit:(x,y:list)(a:A)
(x^y)=(cons a nil)-> (x=nil)/\ y=(cons a nil) \/ x=(cons a nil)/\ y=nil.
Proof.
NewDestruct x;NewDestruct y;Simpl.
Intros a H;Discriminate H.
Left;Split;Auto.
Right;Split;Auto.
Generalize H .
Generalize (app_nil_end l) ;Intros E.
Rewrite <- E;Auto.
Intros.
Injection H.
Intro.
Cut nil=(l^(cons a0 l0));Auto.
Intro.
Generalize (app_cons_not_nil H1); Intro.
Elim H2.
Qed.
Lemma app_inj_tail : (x,y:list)(a,b:A)
(x^(cons a nil))=(y^(cons b nil)) -> x=y /\ a=b.
Proof.
NewInduction x as [|x l IHl];NewDestruct y;Simpl;Auto.
Intros a b H.
Injection H.
Auto.
Intros a0 b H.
Injection H;Intros.
Generalize (app_cons_not_nil H0) ;NewDestruct 1.
Intros a b H.
Injection H;Intros.
Cut nil=(l^(cons a nil));Auto.
Intro.
Generalize (app_cons_not_nil H2) ;NewDestruct 1.
Intros a0 b H.
Injection H;Intros.
NewDestruct (IHl l0 a0 b H0).
Split;Auto.
Rewrite <- H1;Rewrite <- H2;Reflexivity.
Qed.
(*************************)
(** Head and tail *)
(*************************)
Definition head :=
[l:list]Cases l of
| nil => Error
| (cons x _) => (Value x)
end.
Definition tail : list -> list :=
[l:list]Cases l of
| nil => nil
| (cons a m) => m
end.
(****************************************)
(** Length of lists *)
(****************************************)
Fixpoint length [l:list] : nat
:= Cases l of nil => O | (cons _ m) => (S (length m)) end.
(******************************)
(** Length order of lists *)
(******************************)
Section length_order.
Definition lel := [l,m:list](le (length l) (length m)).
Variables a,b:A.
Variables l,m,n:list.
Lemma lel_refl : (lel l l).
Proof.
Unfold lel ; Auto with arith.
Qed.
Lemma lel_trans : (lel l m)->(lel m n)->(lel l n).
Proof.
Unfold lel ; Intros.
NowShow '(le (length l) (length n)).
Apply le_trans with (length m) ; Auto with arith.
Qed.
Lemma lel_cons_cons : (lel l m)->(lel (cons a l) (cons b m)).
Proof.
Unfold lel ; Simpl ; Auto with arith.
Qed.
Lemma lel_cons : (lel l m)->(lel l (cons b m)).
Proof.
Unfold lel ; Simpl ; Auto with arith.
Qed.
Lemma lel_tail : (lel (cons a l) (cons b m)) -> (lel l m).
Proof.
Unfold lel ; Simpl ; Auto with arith.
Qed.
Lemma lel_nil : (l':list)(lel l' nil)->(nil=l').
Proof.
Intro l' ; Elim l' ; Auto with arith.
Intros a' y H H0.
NowShow 'nil=(cons a' y).
Absurd (le (S (length y)) O); Auto with arith.
Qed.
End length_order.
Hints Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons.
(*********************************)
(** The [In] predicate *)
(*********************************)
Fixpoint In [a:A;l:list] : Prop :=
Cases l of nil => False | (cons b m) => (b=a)\/(In a m) end.
Lemma in_eq : (a:A)(l:list)(In a (cons a l)).
Proof.
Simpl ; Auto.
Qed.
Hints Resolve in_eq.
Lemma in_cons : (a,b:A)(l:list)(In b l)->(In b (cons a l)).
Proof.
Simpl ; Auto.
Qed.
Hints Resolve in_cons.
Lemma in_nil : (a:A)~(In a nil).
Proof.
Unfold not; Intros a H; Inversion_clear H.
Qed.
Lemma in_inv : (a,b:A)(l:list)
(In b (cons a l)) -> a=b \/ (In b l).
Proof.
Intros a b l H ; Inversion_clear H ; Auto.
Qed.
Lemma In_dec : ((x,y:A){x=y}+{~x=y}) -> (a:A)(l:list){(In a l)}+{~(In a l)}.
Proof.
NewInduction l as [|a0 l IHl].
Right; Apply in_nil.
NewDestruct (H a0 a); Simpl; Auto.
NewDestruct IHl; Simpl; Auto.
Right; Unfold not; Intros [Hc1 | Hc2]; Auto.
Qed.
Lemma in_app_or : (l,m:list)(a:A)(In a (l^m))->((In a l)\/(In a m)).
Proof.
Intros l m a.
Elim l ; Simpl ; Auto.
Intros a0 y H H0.
NowShow '(a0=a\/(In a y))\/(In a m).
Elim H0 ; Auto.
Intro H1.
NowShow '(a0=a\/(In a y))\/(In a m).
Elim (H H1) ; Auto.
Qed.
Hints Immediate in_app_or.
Lemma in_or_app : (l,m:list)(a:A)((In a l)\/(In a m))->(In a (l^m)).
Proof.
Intros l m a.
Elim l ; Simpl ; Intro H.
NowShow '(In a m).
Elim H ; Auto ; Intro H0.
NowShow '(In a m).
Elim H0. (* subProof completed *)
Intros y H0 H1.
NowShow 'H=a\/(In a (app y m)).
Elim H1 ; Auto 4.
Intro H2.
NowShow 'H=a\/(In a (app y m)).
Elim H2 ; Auto.
Qed.
Hints Resolve in_or_app.
(***************************)
(** Set inclusion on list *)
(***************************)
Definition incl := [l,m:list](a:A)(In a l)->(In a m).
Hints Unfold incl.
Lemma incl_refl : (l:list)(incl l l).
Proof.
Auto.
Qed.
Hints Resolve incl_refl.
Lemma incl_tl : (a:A)(l,m:list)(incl l m)->(incl l (cons a m)).
Proof.
Auto.
Qed.
Hints Immediate incl_tl.
Lemma incl_tran : (l,m,n:list)(incl l m)->(incl m n)->(incl l n).
Proof.
Auto.
Qed.
Lemma incl_appl : (l,m,n:list)(incl l n)->(incl l (n^m)).
Proof.
Auto.
Qed.
Hints Immediate incl_appl.
Lemma incl_appr : (l,m,n:list)(incl l n)->(incl l (m^n)).
Proof.
Auto.
Qed.
Hints Immediate incl_appr.
Lemma incl_cons : (a:A)(l,m:list)(In a m)->(incl l m)->(incl (cons a l) m).
Proof.
Unfold incl ; Simpl ; Intros a l m H H0 a0 H1.
NowShow '(In a0 m).
Elim H1.
NowShow 'a=a0->(In a0 m).
Elim H1 ; Auto ; Intro H2.
NowShow 'a=a0->(In a0 m).
Elim H2 ; Auto. (* solves subgoal *)
NowShow '(In a0 l)->(In a0 m).
Auto.
Qed.
Hints Resolve incl_cons.
Lemma incl_app : (l,m,n:list)(incl l n)->(incl m n)->(incl (l^m) n).
Proof.
Unfold incl ; Simpl ; Intros l m n H H0 a H1.
NowShow '(In a n).
Elim (in_app_or H1); Auto.
Qed.
Hints Resolve incl_app.
(**************************)
(** Nth element of a list *)
(**************************)
Fixpoint nth [n:nat; l:list] : A->A :=
[default]Cases n l of
O (cons x l') => x
| O other => default
| (S m) nil => default
| (S m) (cons x t) => (nth m t default)
end.
Fixpoint nth_ok [n:nat; l:list] : A->bool :=
[default]Cases n l of
O (cons x l') => true
| O other => false
| (S m) nil => false
| (S m) (cons x t) => (nth_ok m t default)
end.
Lemma nth_in_or_default :
(n:nat)(l:list)(d:A){(In (nth n l d) l)}+{(nth n l d)=d}.
(* Realizer nth_ok. Program_all. *)
Proof.
Intros n l d; Generalize n; NewInduction l; Intro n0.
Right; Case n0; Trivial.
Case n0; Simpl.
Auto.
Intro n1; Elim (IHl n1); Auto.
Qed.
Lemma nth_S_cons :
(n:nat)(l:list)(d:A)(a:A)(In (nth n l d) l)
->(In (nth (S n) (cons a l) d) (cons a l)).
Proof.
Simpl; Auto.
Qed.
Fixpoint nth_error [l:list;n:nat] : (Exc A) :=
Cases n l of
| O (cons x _) => (Value x)
| (S n) (cons _ l) => (nth_error l n)
| _ _ => Error
end.
Definition nth_default : A -> list -> nat -> A :=
[default,l,n]Cases (nth_error l n) of
| (Some x) => x
| None => default
end.
Lemma nth_In :
(n:nat)(l:list)(d:A)(lt n (length l))->(In (nth n l d) l).
Proof.
Unfold lt; NewInduction n as [|n hn]; Simpl.
NewDestruct l ; Simpl ; [ Inversion 2 | Auto].
NewDestruct l as [|a l hl] ; Simpl.
Inversion 2.
Intros d ie ; Right ; Apply hn ; Auto with arith.
Qed.
(********************************)
(** Decidable equality on lists *)
(********************************)
Lemma list_eq_dec : ((x,y:A){x=y}+{~x=y})->(x,y:list){x=y}+{~x=y}.
Proof.
NewInduction x as [|a l IHl]; NewDestruct y as [|a0 l0]; Auto.
NewDestruct (H a a0) as [e|e].
NewDestruct (IHl l0) as [e'|e'].
Left; Rewrite e; Rewrite e'; Trivial.
Right; Red; Intro.
Apply e'; Injection H0; Trivial.
Right; Red; Intro.
Apply e; Injection H0; Trivial.
Qed.
(*************************)
(** Reverse *)
(*************************)
Fixpoint rev [l:list] : list :=
Cases l of
nil => nil
| (cons x l') => (rev l')^(cons x nil)
end.
Lemma distr_rev :
(x,y:list) (rev (x^y))=((rev y)^(rev x)).
Proof.
NewInduction x as [|a l IHl].
NewDestruct y.
Simpl.
Auto.
Simpl.
Apply app_nil_end;Auto.
Intro y.
Simpl.
Rewrite (IHl y).
Apply (app_ass (rev y) (rev l) (cons a nil)).
Qed.
Remark rev_unit : (l:list)(a:A) (rev l^(cons a nil))= (cons a (rev l)).
Proof.
Intros.
Apply (distr_rev l (cons a nil));Simpl;Auto.
Qed.
Lemma idempot_rev : (l:list)(rev (rev l))=l.
Proof.
NewInduction l as [|a l IHl].
Simpl;Auto.
Simpl.
Rewrite (rev_unit (rev l) a).
Rewrite -> IHl;Auto.
Qed.
(*********************************************)
(** Reverse Induction Principle on Lists *)
(*********************************************)
Section Reverse_Induction.
Unset Implicit Arguments.
Remark rev_list_ind: (P:list->Prop)
(P nil)
->((a:A)(l:list)(P (rev l))->(P (rev (cons a l))))
->(l:list) (P (rev l)).
Proof.
NewInduction l; Auto.
Qed.
Set Implicit Arguments.
Lemma rev_ind :
(P:list->Prop)
(P nil)->
((x:A)(l:list)(P l)->(P l^(cons x nil)))
->(l:list)(P l).
Proof.
Intros.
Generalize (idempot_rev l) .
Intros E;Rewrite <- E.
Apply (rev_list_ind P).
Auto.
Simpl.
Intros.
Apply (H0 a (rev l0)).
Auto.
Qed.
End Reverse_Induction.
End Lists.
Implicits nil [1].
Hints Resolve nil_cons app_nil_end ass_app app_ass : datatypes v62.
Hints Resolve app_comm_cons app_cons_not_nil : datatypes v62.
Hints Immediate app_eq_nil : datatypes v62.
Hints Resolve app_eq_unit app_inj_tail : datatypes v62.
Hints Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons
: datatypes v62.
Hints Resolve in_eq in_cons in_inv in_nil in_app_or in_or_app : datatypes v62.
Hints Resolve incl_refl incl_tl incl_tran incl_appl incl_appr incl_cons incl_app
: datatypes v62.
Section Functions_on_lists.
(****************************************************************)
(** Some generic functions on lists and basic functions of them *)
(****************************************************************)
Section Map.
Variables A,B:Set.
Variable f:A->B.
Fixpoint map [l:(list A)] : (list B) :=
Cases l of
nil => nil
| (cons a t) => (cons (f a) (map t))
end.
End Map.
Lemma in_map : (A,B:Set)(f:A->B)(l:(list A))(x:A)
(In x l) -> (In (f x) (map f l)).
Proof.
NewInduction l as [|a l IHl]; Simpl;
[ Auto
| NewDestruct 1;
[ Left; Apply f_equal with f:=f; Assumption
| Auto]
].
Qed.
Fixpoint flat_map [A,B:Set; f:A->(list B); l:(list A)] : (list B) :=
Cases l of
nil => nil
| (cons x t) => (app (f x) (flat_map f t))
end.
Fixpoint list_prod [A:Set; B:Set; l:(list A)] : (list B)->(list A*B) :=
[l']Cases l of
nil => nil
| (cons x t) => (app (map [y:B](x,y) l')
(list_prod t l'))
end.
Lemma in_prod_aux :
(A:Set)(B:Set)(x:A)(y:B)(l:(list B))
(In y l) -> (In (x,y) (map [y0:B](x,y0) l)).
Proof.
NewInduction l;
[ Simpl; Auto
| Simpl; NewDestruct 1 as [H1|];
[ Left; Rewrite H1; Trivial
| Right; Auto]
].
Qed.
Lemma in_prod : (A:Set)(B:Set)(l:(list A))(l':(list B))
(x:A)(y:B)(In x l)->(In y l')->(In (x,y) (list_prod l l')).
Proof.
NewInduction l;
[ Simpl; Tauto
| Simpl; Intros; Apply in_or_app; NewDestruct H;
[ Left; Rewrite H; Apply in_prod_aux; Assumption
| Right; Auto]
].
Qed.
(** [(list_power x y)] is [y^x], or the set of sequences of elts of [y]
indexed by elts of [x], sorted in lexicographic order. *)
Fixpoint list_power [A,B:Set; l:(list A)] : (list B)->(list (list A*B)) :=
[l']Cases l of
nil => (cons nil nil)
| (cons x t) => (flat_map [f:(list A*B)](map [y:B](cons (x,y) f) l')
(list_power t l'))
end.
(************************************)
(** Left-to-right iterator on lists *)
(************************************)
Section Fold_Left_Recursor.
Variables A,B:Set.
Variable f:A->B->A.
Fixpoint fold_left[l:(list B)] : A -> A :=
[a0]Cases l of
nil => a0
| (cons b t) => (fold_left t (f a0 b))
end.
End Fold_Left_Recursor.
(************************************)
(** Right-to-left iterator on lists *)
(************************************)
Section Fold_Right_Recursor.
Variables A,B:Set.
Variable f:B->A->A.
Variable a0:A.
Fixpoint fold_right [l:(list B)] : A :=
Cases l of
nil => a0
| (cons b t) => (f b (fold_right t))
end.
End Fold_Right_Recursor.
Theorem fold_symmetric :
(A:Set)(f:A->A->A)
((x,y,z:A)(f x (f y z))=(f (f x y) z))
->((x,y:A)(f x y)=(f y x))
->(a0:A)(l:(list A))(fold_left f l a0)=(fold_right f a0 l).
Proof.
NewDestruct l as [|a l].
Reflexivity.
Simpl.
Rewrite <- H0.
Generalize a0 a.
NewInduction l as [|a3 l IHl]; Simpl.
Trivial.
Intros.
Rewrite H.
Rewrite (H0 a2).
Rewrite <- (H a1).
Rewrite (H0 a1).
Rewrite IHl.
Reflexivity.
Qed.
End Functions_on_lists.
V7only [Implicits nil [].].
(** Exporting list notations *)
V8Infix "::" cons (at level 60, right associativity) : list_scope.
Infix RIGHTA 7 "^" app : list_scope V8only RIGHTA 60 "++".
Open Scope list_scope.
|