aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Ints/num/Nbasic.v
blob: e2ce0642529ac8bc15e7514a04219fb01127b84f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
Require Import ZArith.
Require Import ZAux.
Require Import ZDivModAux.
Require Import Basic_type.

(* To compute the necessary height *)

Fixpoint plength (p: positive) : positive :=
  match p with 
    xH => xH
  | xO p1 => Psucc (plength p1)
  | xI p1 => Psucc (plength p1)
  end.

Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z.
assert (F: (forall p, 2 ^ (Zpos (Psucc p)) = 2 * 2 ^ Zpos p)%Z).
intros p; replace (Zpos (Psucc p)) with (1 + Zpos p)%Z.
rewrite Zpower_exp; auto with zarith.
rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith.
intros p; elim p; simpl plength; auto.
intros p1 Hp1; rewrite F; repeat rewrite Zpos_xI.
assert (tmp: (forall p, 2 * p = p + p)%Z); 
  try repeat rewrite tmp; auto with zarith.
intros p1 Hp1; rewrite F; rewrite (Zpos_xO p1).
assert (tmp: (forall p, 2 * p = p + p)%Z); 
  try repeat rewrite tmp; auto with zarith.
rewrite ZPowerAux.Zpower_exp_1; auto with zarith.
Qed.

Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Ppred p)))%Z.
intros p; case (Psucc_pred p); intros H1.
subst; simpl plength.
rewrite ZPowerAux.Zpower_exp_1; auto with zarith.
pattern p at 1; rewrite <- H1.
rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith.
generalize (plength_correct (Ppred p)); auto with zarith.
Qed.

Definition Pdiv p q :=
  match Zdiv (Zpos p) (Zpos q) with
    Zpos q1 => match (Zpos p) - (Zpos q) * (Zpos q1) with
                 Z0 => q1
               | _ => (Psucc q1)
               end
  |  _ => xH
  end.

Theorem Pdiv_le: forall p q,
  Zpos p <= Zpos q * Zpos (Pdiv p q).
intros p q.
unfold Pdiv.
assert (H1: Zpos q > 0); auto with zarith.
assert (H1b: Zpos p >= 0); auto with zarith.
generalize (Z_div_ge0 (Zpos p) (Zpos q) H1 H1b).
generalize (Z_div_mod_eq (Zpos p) (Zpos q) H1); case Zdiv.
  intros HH _; rewrite HH; rewrite Zmult_0_r; rewrite Zmult_1_r; simpl.
case (Z_mod_lt (Zpos p) (Zpos q) H1); auto with zarith.
intros q1 H2.
replace (Zpos p - Zpos q * Zpos q1) with (Zpos p mod Zpos q).
  2: pattern (Zpos p) at 2; rewrite H2; auto with zarith.
generalize H2 (Z_mod_lt (Zpos p) (Zpos q) H1); clear H2; 
  case Zmod.
  intros HH _; rewrite HH; auto with zarith.
  intros r1 HH (_,HH1); rewrite HH; rewrite Zpos_succ_morphism.
  unfold Zsucc; rewrite Zmult_plus_distr_r; auto with zarith.
  intros r1 _ (HH,_); case HH; auto.
intros q1 HH; rewrite HH.
unfold Zge; simpl Zcompare; intros HH1; case HH1; auto.
Qed.

Definition is_one p := match p with xH => true | _ => false end.

Theorem is_one_one: forall p, is_one p = true -> p = xH.
intros p; case p; auto; intros p1 H1; discriminate H1.
Qed.

Definition get_height digits p :=
  let r := Pdiv p digits in
   if is_one r then xH else Psucc (plength (Ppred r)).

Theorem get_height_correct:
  forall digits N,
   Zpos N <= Zpos digits * (2 ^ (Zpos (get_height digits N) -1)).
intros digits N.
unfold get_height.
assert (H1 := Pdiv_le N digits).
case_eq (is_one (Pdiv N digits)); intros H2.
rewrite (is_one_one _ H2) in H1.
rewrite Zmult_1_r in H1.
change (2^(1-1))%Z with 1; rewrite Zmult_1_r; auto.
clear H2.
apply Zle_trans with (1 := H1).
apply Zmult_le_compat_l; auto with zarith.
rewrite Zpos_succ_morphism; unfold Zsucc.
rewrite Zplus_comm; rewrite Zminus_plus.
apply plength_pred_correct.
Qed.



Definition zn2z_word_comm : forall w n, zn2z (word w n) = word (zn2z w) n.
 fix zn2z_word_comm 2.
 intros w n; case n.
  reflexivity.
  intros n0;simpl.
  case (zn2z_word_comm w n0).
  reflexivity.
Defined.

Fixpoint extend (n:nat) {struct n} : forall w:Set, zn2z w -> word w (S n) :=
 match n return forall w:Set, zn2z w -> word w (S n) with 
 | O => fun w x => x
 | S m => 
   let aux := extend m in
   fun w x => WW W0 (aux w x)
 end.

Section ExtendMax.

 Variable w:Set.

 Definition Tmax n m :=
  (  {p:nat| word (word w n) p = word w m} 
    + {p:nat| word (word w m) p = word w n})%type.

 Definition max : forall n m, Tmax n m.
  fix max 1;intros n.
  case n.
  intros m;left;exists m;exact (refl_equal (word w m)).
  intros n0 m;case m.
  right;exists (S n0);exact (refl_equal (word w (S n0))).
  intros m0;case (max n0 m0);intros H;case H;intros p Heq.
  left;exists p;simpl.
   case (zn2z_word_comm (word w n0) p).
   case Heq.
   exact (refl_equal (zn2z (word (word w n0) p))).
  right;exists p;simpl.
   case (zn2z_word_comm (word w m0) p).
   case Heq.
   exact (refl_equal (zn2z (word (word w m0) p))).
 Defined.

 Definition extend_to_max : 
  forall n m (x:zn2z (word w n)) (y:zn2z (word w m)), 
        (zn2z (word w m) + zn2z (word w n))%type.
  intros n m x y.
   case (max n m);intros (p, Heq);case Heq.
   left;exact (extend p (word w n) x).
   right;exact (extend p (word w m) y).
 Defined. 

End ExtendMax.

Section Reduce.

 Variable w : Set.
 Variable nT : Set.
 Variable N0 : nT.
 Variable eq0 : w -> bool.
 Variable reduce_n : w -> nT.
 Variable zn2z_to_Nt : zn2z w -> nT.

 Definition reduce_n1 (x:zn2z w) :=
  match x with
  | W0 => N0
  | WW xh xl =>
    if eq0 xh then reduce_n xl
    else zn2z_to_Nt x
  end.

End Reduce.

Section ReduceRec.

 Variable w : Set.
 Variable nT : Set.
 Variable N0 : nT.
 Variable reduce_1n : zn2z w -> nT.
 Variable c : forall n, word w (S n) -> nT.

 Fixpoint reduce_n (n:nat) : word w (S n) -> nT :=
  match n return word w (S n) -> nT with
  | O => reduce_1n
  | S m => fun x =>
    match x with
    | W0 => N0
    | WW xh xl =>
      match xh with
      | W0 => @reduce_n m xl
      | _ => @c (S m) x 
      end
    end	
  end.

End ReduceRec.

Definition opp_compare cmp :=
  match cmp with
  | Lt => Gt
  | Eq => Eq
  | Gt => Lt
  end.

Section CompareRec.

 Variable wm w : Set.
 Variable w_0 : w.
 Variable compare : w -> w -> comparison.
 Variable compare0_m : wm -> comparison.
 Variable compare_m : wm -> w -> comparison.

 Fixpoint compare0_mn (n:nat) : word wm n -> comparison :=
  match n return word wm n -> comparison with 
  | O => compare0_m 
  | S m => fun x =>
    match x with
    | W0 => Eq
    | WW xh xl => 
      match compare0_mn m xh with
      | Eq => compare0_mn m xl 
      | r  => Lt
      end
    end
  end.

 Fixpoint compare_mn_1 (n:nat) : word wm n -> w -> comparison :=
  match n return word wm n -> w -> comparison with 
  | O => compare_m 
  | S m => fun x y => 
    match x with
    | W0 => compare w_0 y
    | WW xh xl => 
      match compare0_mn m xh with
      | Eq => compare_mn_1 m xl y 
      | r  => Gt
      end
    end
  end.

End CompareRec.