blob: d475bb54d67ff41d579b3c9b01ca8ea2d92c5b31 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import Bool.
Require Import Sumbool.
Require Import Arith.
Require Import NArith.
Require Import Ndigits.
Require Import Ndec.
Require Import Nnat.
Require Import Map.
Require Import Fset.
Section AdAlloc.
Variable A : Set.
(** Allocator: returns an address not in the domain of [m].
This allocator is optimal in that it returns the lowest possible address,
in the usual ordering on integers. It is not the most efficient, however. *)
Fixpoint ad_alloc_opt (m:Map A) : ad :=
match m with
| M0 => N0
| M1 a _ => if Neqb a N0 then Npos 1 else N0
| M2 m1 m2 =>
Nmin (Ndouble (ad_alloc_opt m1))
(Ndouble_plus_one (ad_alloc_opt m2))
end.
Lemma ad_alloc_opt_allocates_1 :
forall m:Map A, MapGet A m (ad_alloc_opt m) = None.
Proof.
induction m as [| a| m0 H m1 H0]. reflexivity.
simpl in |- *. elim (sumbool_of_bool (Neqb a N0)). intro H. rewrite H.
rewrite (Neqb_complete _ _ H). reflexivity.
intro H. rewrite H. rewrite H. reflexivity.
intros. change
(ad_alloc_opt (M2 A m0 m1)) with (Nmin (Ndouble (ad_alloc_opt m0))
(Ndouble_plus_one (ad_alloc_opt m1)))
in |- *.
elim
(Nmin_choice (Ndouble (ad_alloc_opt m0))
(Ndouble_plus_one (ad_alloc_opt m1))).
intro H1. rewrite H1. rewrite MapGet_M2_bit_0_0. rewrite Ndouble_div2. assumption.
apply Ndouble_bit0.
intro H1. rewrite H1. rewrite MapGet_M2_bit_0_1. rewrite Ndouble_plus_one_div2. assumption.
apply Ndouble_plus_one_bit0.
Qed.
Lemma ad_alloc_opt_allocates :
forall m:Map A, in_dom A (ad_alloc_opt m) m = false.
Proof.
unfold in_dom in |- *. intro. rewrite (ad_alloc_opt_allocates_1 m). reflexivity.
Qed.
(** Moreover, this is optimal: all addresses below [(ad_alloc_opt m)]
are in [dom m]: *)
Lemma ad_alloc_opt_optimal_1 :
forall (m:Map A) (a:ad),
Nle (ad_alloc_opt m) a = false -> {y : A | MapGet A m a = Some y}.
Proof.
induction m as [| a y| m0 H m1 H0]. simpl in |- *. unfold Nle in |- *. simpl in |- *. intros. discriminate H.
simpl in |- *. intros b H. elim (sumbool_of_bool (Neqb a N0)). intro H0. rewrite H0 in H.
unfold Nle in H. cut (N0 = b). intro. split with y. rewrite <- H1. rewrite H0. reflexivity.
rewrite <- (N_of_nat_of_N b).
rewrite <- (le_n_O_eq _ (le_S_n _ _ (leb_complete_conv _ _ H))). reflexivity.
intro H0. rewrite H0 in H. discriminate H.
intros. simpl in H1. elim (Ndouble_or_double_plus_un a). intro H2. elim H2. intros a0 H3.
rewrite H3 in H1. elim (H _ (Nlt_double_mono_conv _ _ (Nmin_lt_3 _ _ _ H1))). intros y H4.
split with y. rewrite H3. rewrite MapGet_M2_bit_0_0. rewrite Ndouble_div2. assumption.
apply Ndouble_bit0.
intro H2. elim H2. intros a0 H3. rewrite H3 in H1.
elim (H0 _ (Nlt_double_plus_one_mono_conv _ _ (Nmin_lt_4 _ _ _ H1))). intros y H4.
split with y. rewrite H3. rewrite MapGet_M2_bit_0_1. rewrite Ndouble_plus_one_div2.
assumption.
apply Ndouble_plus_one_bit0.
Qed.
Lemma ad_alloc_opt_optimal :
forall (m:Map A) (a:ad),
Nle (ad_alloc_opt m) a = false -> in_dom A a m = true.
Proof.
intros. unfold in_dom in |- *. elim (ad_alloc_opt_optimal_1 m a H). intros y H0. rewrite H0.
reflexivity.
Qed.
End AdAlloc.
|