aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Init/Wf.v
blob: 4fb640827b6f09e7aa344151bc78851a19f397e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i $Id$ i*)

(** This module proves the validity of
    - well-founded recursion (also called course of values)
    - well-founded induction

   from a well-founded ordering on a given set *)

Require Logic.
Require LogicSyntax.

(** Well-founded induction principle on Prop *)

Chapter Well_founded.

 Variable A : Set.
 Variable R : A -> A -> Prop.

 (** The accessibility predicate is defined to be non-informative *)

 Inductive  Acc : A -> Prop 
    := Acc_intro : (x:A)((y:A)(R y x)->(Acc y))->(Acc x).

 Lemma Acc_inv : (x:A)(Acc x) -> (y:A)(R y x) -> (Acc y).
  NewDestruct 1; Trivial.
 Defined.

  (** the informative elimination :
     [let Acc_rec F = let rec wf x = F x wf in wf] *)

 Section AccRecType.
  Variable P : A -> Type.
  Variable F : (x:A)((y:A)(R y x)->(Acc y))->((y:A)(R y x)->(P y))->(P x).

  Fixpoint Acc_rect [x:A;a:(Acc x)] : (P x)
     := (F x (Acc_inv x a) ([y:A][h:(R y x)](Acc_rect y (Acc_inv x a y h)))).

 End AccRecType.

 Definition Acc_rec [P:A->Set] := (Acc_rect P).

 (** A relation is well-founded if every element is accessible *)

 Definition well_founded := (a:A)(Acc a).

 (** well-founded induction on Set and Prop *)

 Hypothesis Rwf : well_founded.

 Theorem well_founded_induction_type : 
        (P:A->Type)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
 Proof.
  Intros; Apply (Acc_rect P); Auto.
 Qed.

 Theorem well_founded_induction :
        (P:A->Set)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
 Proof.
  Exact [P:A->Set](well_founded_induction_type P).
 Qed.

 Theorem well_founded_ind : 
         (P:A->Prop)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
 Proof.
  Exact [P:A->Prop](well_founded_induction_type P).
 Qed.

(** Building fixpoints  *) 

Section FixPoint.

Variable P : A -> Set.
Variable F : (x:A)((y:A)(R y x)->(P y))->(P x).

Fixpoint Fix_F [x:A;r:(Acc x)] : (P x) := 
         (F x [y:A][p:(R y x)](Fix_F y (Acc_inv x r y p))).

Definition fix := [x:A](Fix_F x (Rwf x)).

(** Proof that [well_founded_induction] satisfies the fixpoint equation. 
    It requires an extra property of the functional *)

Hypothesis F_ext : 
  (x:A)(f,g:(y:A)(R y x)->(P y))
  ((y:A)(p:(R y x))((f y p)=(g y p)))->(F x f)=(F x g).

Scheme Acc_inv_dep := Induction for Acc Sort Prop.

Lemma Fix_F_eq
  : (x:A)(r:(Acc x))
    (F x [y:A][p:(R y x)](Fix_F y (Acc_inv x r y p)))=(Fix_F x r).
Intros x r; Elim r using  Acc_inv_dep; Auto.
Qed.

Lemma Fix_F_inv : (x:A)(r,s:(Acc x))(Fix_F x r)=(Fix_F x s).
Intro x; Elim (Rwf x); Intros.
Case (Fix_F_eq x0 r); Case (Fix_F_eq x0 s); Intros.
Apply F_ext; Auto.
Qed.


Lemma Fix_eq : (x:A)(fix x)=(F x [y:A][p:(R y x)](fix y)).
Intro; Unfold fix.
Case (Fix_F_eq x).
Apply F_ext; Intros.
Apply Fix_F_inv.
Qed.

End FixPoint.

End Well_founded.