1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** The type [nat] of Peano natural numbers (built from [O] and [S])
is defined in [Datatypes.v] *)
(** This module defines the following operations on natural numbers :
- predecessor [pred]
- addition [plus]
- multiplication [mult]
- less or equal order [le]
- less [lt]
- greater or equal [ge]
- greater [gt]
It states various lemmas and theorems about natural numbers,
including Peano's axioms of arithmetic (in Coq, these are provable).
Case analysis on [nat] and induction on [nat * nat] are provided too
*)
Require Import Notations.
Require Import Datatypes.
Require Import Logic.
Open Scope nat_scope.
Definition eq_S := f_equal S.
Hint Resolve (f_equal S): v62.
Hint Resolve (f_equal (A:=nat)): core.
(** The predecessor function *)
Definition pred (n:nat) : nat := match n with
| O => n
| S u => u
end.
Hint Resolve (f_equal pred): v62.
Theorem pred_Sn : forall n:nat, n = pred (S n).
Proof.
simpl; reflexivity.
Qed.
(** Injectivity of successor *)
Definition eq_add_S n m (H: S n = S m): n = m := f_equal pred H.
Hint Immediate eq_add_S: core.
Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Proof.
red; auto.
Qed.
Hint Resolve not_eq_S: core.
Definition IsSucc (n:nat) : Prop :=
match n with
| O => False
| S p => True
end.
(** Zero is not the successor of a number *)
Theorem O_S : forall n:nat, 0 <> S n.
Proof.
discriminate.
Qed.
Hint Resolve O_S: core.
Theorem n_Sn : forall n:nat, n <> S n.
Proof.
induction n; auto.
Qed.
Hint Resolve n_Sn: core.
(** Addition *)
Fixpoint plus (n m:nat) : nat :=
match n with
| O => m
| S p => S (p + m)
end
where "n + m" := (plus n m) : nat_scope.
Hint Resolve (f_equal2 plus): v62.
Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core.
Lemma plus_n_O : forall n:nat, n = n + 0.
Proof.
induction n; simpl; auto.
Qed.
Hint Resolve plus_n_O: core.
Lemma plus_O_n : forall n:nat, 0 + n = n.
Proof.
auto.
Qed.
Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Proof.
intros n m; induction n; simpl; auto.
Qed.
Hint Resolve plus_n_Sm: core.
Lemma plus_Sn_m : forall n m:nat, S n + m = S (n + m).
Proof.
auto.
Qed.
(** Standard associated names *)
Notation plus_0_r_reverse := plus_n_O (compat "8.2").
Notation plus_succ_r_reverse := plus_n_Sm (compat "8.2").
(** Multiplication *)
Fixpoint mult (n m:nat) : nat :=
match n with
| O => 0
| S p => m + p * m
end
where "n * m" := (mult n m) : nat_scope.
Hint Resolve (f_equal2 mult): core.
Lemma mult_n_O : forall n:nat, 0 = n * 0.
Proof.
induction n; simpl; auto.
Qed.
Hint Resolve mult_n_O: core.
Lemma mult_n_Sm : forall n m:nat, n * m + n = n * S m.
Proof.
intros; induction n as [| p H]; simpl; auto.
destruct H; rewrite <- plus_n_Sm; apply eq_S.
pattern m at 1 3; elim m; simpl; auto.
Qed.
Hint Resolve mult_n_Sm: core.
(** Standard associated names *)
Notation mult_0_r_reverse := mult_n_O (compat "8.2").
Notation mult_succ_r_reverse := mult_n_Sm (compat "8.2").
(** Truncated subtraction: [m-n] is [0] if [n>=m] *)
Fixpoint minus (n m:nat) : nat :=
match n, m with
| O, _ => n
| S k, O => n
| S k, S l => k - l
end
where "n - m" := (minus n m) : nat_scope.
(** Definition of the usual orders, the basic properties of [le] and [lt]
can be found in files Le and Lt *)
Inductive le (n:nat) : nat -> Prop :=
| le_n : n <= n
| le_S : forall m:nat, n <= m -> n <= S m
where "n <= m" := (le n m) : nat_scope.
Hint Constructors le: core.
(*i equivalent to : "Hints Resolve le_n le_S : core." i*)
Definition lt (n m:nat) := S n <= m.
Hint Unfold lt: core.
Infix "<" := lt : nat_scope.
Definition ge (n m:nat) := m <= n.
Hint Unfold ge: core.
Infix ">=" := ge : nat_scope.
Definition gt (n m:nat) := m < n.
Hint Unfold gt: core.
Infix ">" := gt : nat_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : nat_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : nat_scope.
Notation "x < y < z" := (x < y /\ y < z) : nat_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : nat_scope.
Theorem le_pred : forall n m, n <= m -> pred n <= pred m.
Proof.
induction 1; auto. destruct m; simpl; auto.
Qed.
Theorem le_S_n : forall n m, S n <= S m -> n <= m.
Proof.
intros n m. exact (le_pred (S n) (S m)).
Qed.
(** Case analysis *)
Theorem nat_case :
forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n.
Proof.
induction n; auto.
Qed.
(** Principle of double induction *)
Theorem nat_double_ind :
forall R:nat -> nat -> Prop,
(forall n:nat, R 0 n) ->
(forall n:nat, R (S n) 0) ->
(forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.
Proof.
induction n; auto.
destruct m; auto.
Qed.
(** Maximum and minimum : definitions and specifications *)
Fixpoint max n m : nat :=
match n, m with
| O, _ => m
| S n', O => n
| S n', S m' => S (max n' m')
end.
Fixpoint min n m : nat :=
match n, m with
| O, _ => 0
| S n', O => 0
| S n', S m' => S (min n' m')
end.
Theorem max_l : forall n m : nat, m <= n -> max n m = n.
Proof.
induction n; destruct m; simpl; auto. inversion 1.
intros. apply f_equal. apply IHn. apply le_S_n. trivial.
Qed.
Theorem max_r : forall n m : nat, n <= m -> max n m = m.
Proof.
induction n; destruct m; simpl; auto. inversion 1.
intros. apply f_equal. apply IHn. apply le_S_n. trivial.
Qed.
Theorem min_l : forall n m : nat, n <= m -> min n m = n.
Proof.
induction n; destruct m; simpl; auto. inversion 1.
intros. apply f_equal. apply IHn. apply le_S_n. trivial.
Qed.
Theorem min_r : forall n m : nat, m <= n -> min n m = m.
Proof.
induction n; destruct m; simpl; auto. inversion 1.
intros. apply f_equal. apply IHn. apply le_S_n. trivial.
Qed.
(** [n]th iteration of the function [f] *)
Fixpoint nat_iter (n:nat) {A} (f:A->A) (x:A) : A :=
match n with
| O => x
| S n' => f (nat_iter n' f x)
end.
Lemma nat_iter_succ_r n {A} (f:A->A) (x:A) :
nat_iter (S n) f x = nat_iter n f (f x).
Proof.
induction n; intros; simpl; rewrite <- ?IHn; trivial.
Qed.
Theorem nat_iter_plus :
forall (n m:nat) {A} (f:A -> A) (x:A),
nat_iter (n + m) f x = nat_iter n f (nat_iter m f x).
Proof.
induction n; intros; simpl; rewrite ?IHn; trivial.
Qed.
(** Preservation of invariants : if [f : A->A] preserves the invariant [Inv],
then the iterates of [f] also preserve it. *)
Theorem nat_iter_invariant :
forall (n:nat) {A} (f:A -> A) (P : A -> Prop),
(forall x, P x -> P (f x)) ->
forall x, P x -> P (nat_iter n f x).
Proof.
induction n; simpl; trivial.
intros A f P Hf x Hx. apply Hf, IHn; trivial.
Qed.
|