aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Init/Logic_Type.v
blob: de4d2721fb72d1e62b6b82f8a21e5eb619d8f79d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i $Id$ i*)

(** This module defines quantification on the world [Type]
    ([Logic.v] was defining it on the world [Set]) *)

Require Export Logic.
Require LogicSyntax.


(** [allT A P], or simply [(ALLT x | P(x))], stands for [(x:A)(P x)]
   when [A] is of type [Type] *)

(*
Definition allT := [A:Type][P:A->Prop](x:A)(P x). 
*)

Syntactic Definition allT := all.

Section universal_quantification.

Variable A : Type.
Variable P : A->Prop.

Theorem inst :  (x:A)(allT ? [x](P x))->(P x).
Proof.
Unfold all; Auto.
Qed.

Theorem gen : (B:Prop)(f:(y:A)B->(P y))B->(allT A P).
Proof.
Red; Auto.
Qed.

End universal_quantification.

(** * Existential Quantification *)

(** [exT A P], or simply [(EXT x | P(x))], stands for the existential 
    quantification on the predicate [P] when [A] is of type [Type] *)

(** [exT2 A P Q], or simply [(EXT x | P(x) & Q(x))], stands for the
    existential quantification on both [P] and [Q] when [A] is of
    type [Type] *)
(*
Inductive  exT [A:Type;P:A->Prop] : Prop
    := exT_intro : (x:A)(P x)->(exT A P).
*)

Syntactic Definition exT := ex.
Syntactic Definition exT_intro := ex_intro.
Syntactic Definition exT_ind  := ex_ind.

(*
Inductive exT2 [A:Type;P,Q:A->Prop] : Prop
    := exT_intro2 : (x:A)(P x)->(Q x)->(exT2 A P Q).
*)

Syntactic Definition exT2 := ex2.
Syntactic Definition exT_intro2 := ex_intro2.
Syntactic Definition exT2_ind  := ex2_ind.

(** Leibniz equality : [A:Type][x,y:A] (P:A->Prop)(P x)->(P y)

   [eqT A x y], or simply [x==y], is Leibniz' equality when [A] is of 
   type [Type]. This equality satisfies reflexivity (by definition), 
   symmetry, transitivity and stability by congruence *)


(*
Inductive eqT [A:Type;x:A] : A -> Prop
                       := refl_eqT : (eqT A x x).

Hints Resolve refl_eqT (* exT_intro2 exT_intro *) : core v62.
*)
Syntactic Definition eqT      := eq.
Syntactic Definition refl_eqT := refl_equal.
Syntactic Definition eqT_ind  := eq_ind.
Syntactic Definition eqT_rect := eq_rect.
Syntactic Definition eqT_rec  := eq_rec.

(*
Section Equality_is_a_congruence.

 Variables A,B : Type.
 Variable  f : A->B.

 Variable x,y,z : A.
 
 Lemma sym_eqT : (eqT ? x y) -> (eqT ? y x).
 Proof.
  Induction 1; Trivial.
 Qed.

 Lemma trans_eqT : (eqT ? x y) -> (eqT ? y z) -> (eqT ? x z).
 Proof.
  Induction 2; Trivial.
 Qed.

 Lemma congr_eqT : (eqT ? x y)->(eqT ? (f x) (f y)).
 Proof.
  Induction 1; Trivial.
 Qed.

 Lemma sym_not_eqT : ~(eqT ? x y) -> ~(eqT ? y x).
 Proof.
  Red; Intros H H'; Apply H; Elim H'; Trivial.
 Qed.

End Equality_is_a_congruence.
*)
Syntactic Definition sym_eqT  := sym_eq.
Syntactic Definition trans_eqT  := trans_eq.
Syntactic Definition congr_eqT  := f_equal.
Syntactic Definition sym_not_eqT  := sym_not_eq.

(*
Hints Immediate sym_eqT sym_not_eqT : core v62.
*)

(** This states the replacement of equals by equals *)

(*
Definition eqT_ind_r : (A:Type)(x:A)(P:A->Prop)(P x)->(y:A)(eqT ? y x)->(P y).
Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial.
Defined.

Definition eqT_rec_r : (A:Type)(x:A)(P:A->Set)(P x)->(y:A)(eqT ? y x)->(P y).
Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial.
Defined.

Definition eqT_rect_r : (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eqT ? y x)->(P y).
Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial.
Defined.
*)

Syntactic Definition eqT_ind_r  := eq_ind_r.
Syntactic Definition eqT_rec_r  := eq_rec_r.
Syntactic Definition eqT_rect_r  := eq_rect_r.

(** Some datatypes at the [Type] level *)

Inductive EmptyT: Type :=.
Inductive UnitT : Type := IT : UnitT.

Definition notT := [A:Type] A->EmptyT.

(** Have you an idea of what means [identityT A a b]? No matter! *)

Inductive identityT [A:Type; a:A] : A->Type :=
     refl_identityT : (identityT A a a).

Hints Resolve refl_identityT : core v62.

Section IdentityT_is_a_congruence.

 Variables A,B : Type.
 Variable  f : A->B.

 Variable x,y,z : A.
 
 Lemma sym_idT : (identityT ? x y) -> (identityT ? y x).
 Proof.
  Induction 1; Trivial.
 Qed.

 Lemma trans_idT : (identityT ? x y) -> (identityT ? y z) -> (identityT ? x z).
 Proof.
  Induction 2; Trivial.
 Qed.

 Lemma congr_idT : (identityT ? x y)->(identityT ? (f x) (f y)).
 Proof.
  Induction 1; Trivial.
 Qed.

 Lemma sym_not_idT : (notT (identityT ? x y)) -> (notT (identityT ? y x)).
 Proof.
  Red; Intros H H'; Apply H; Elim H'; Trivial.
 Qed.

End IdentityT_is_a_congruence.

Definition identityT_ind_r :
     (A:Type)
        (a:A)
         (P:A->Prop)
          (P a)->(y:A)(identityT ? y a)->(P y).
 Intros A x P H y H0; Case sym_idT with 1:= H0; Trivial.
Defined.

Definition identityT_rec_r :      
     (A:Type)
        (a:A)
         (P:A->Set)
          (P a)->(y:A)(identityT ? y a)->(P y).
 Intros A x P H y H0; Case sym_idT with 1:= H0; Trivial.
Defined.

Definition identityT_rect_r :      
     (A:Type)
        (a:A)
         (P:A->Type)
          (P a)->(y:A)(identityT ? y a)->(P y).
 Intros A x P H y H0; Case sym_idT with 1:= H0; Trivial.
Defined.

Inductive prodT [A,B:Type] : Type := pairT : A -> B -> (prodT A B).

Section prodT_proj.

  Variables A, B : Type.

  Definition fstT := [H:(prodT A B)]Cases H of (pairT x _) => x end.
  Definition sndT := [H:(prodT A B)]Cases H of (pairT _ y) => y end.

End prodT_proj.

Definition prodT_uncurry : (A,B,C:Type)((prodT A B)->C)->A->B->C :=
  [A,B,C:Type; f:((prodT A B)->C); x:A; y:B]
  (f (pairT A B x y)).

Definition prodT_curry : (A,B,C:Type)(A->B->C)->(prodT A B)->C :=
  [A,B,C:Type; f:(A->B->C); p:(prodT A B)]
  Cases p of
  | (pairT x y) => (f x y)
  end.

Hints Immediate sym_idT sym_not_idT : core v62.

Implicits fstT [1 2].
Implicits sndT [1 2].
Implicits pairT [1 2].