1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * Decimal numbers *)
(** These numbers coded in base 10 will be used for parsing and printing
other Coq numeral datatypes in an human-readable way.
See the [Numeral Notation] command.
We represent numbers in base 10 as lists of decimal digits,
in big-endian order (most significant digit comes first). *)
(** Unsigned integers are just lists of digits.
For instance, ten is (D1 (D0 Nil)) *)
Inductive uint :=
| Nil
| D0 (_:uint)
| D1 (_:uint)
| D2 (_:uint)
| D3 (_:uint)
| D4 (_:uint)
| D5 (_:uint)
| D6 (_:uint)
| D7 (_:uint)
| D8 (_:uint)
| D9 (_:uint).
(** [Nil] is the number terminator. Taken alone, it behaves as zero,
but rather use [D0 Nil] instead, since this form will be denoted
as [0], while [Nil] will be printed as [Nil]. *)
Notation zero := (D0 Nil).
(** For signed integers, we use two constructors [Pos] and [Neg]. *)
Inductive int := Pos (d:uint) | Neg (d:uint).
Delimit Scope uint_scope with uint.
Bind Scope uint_scope with uint.
Delimit Scope int_scope with int.
Bind Scope int_scope with int.
(** This representation favors simplicity over canonicity.
For normalizing numbers, we need to remove head zero digits,
and choose our canonical representation of 0 (here [D0 Nil]
for unsigned numbers and [Pos (D0 Nil)] for signed numbers). *)
(** [nzhead] removes all head zero digits *)
Fixpoint nzhead d :=
match d with
| D0 d => nzhead d
| _ => d
end.
(** [unorm] : normalization of unsigned integers *)
Definition unorm d :=
match nzhead d with
| Nil => zero
| d => d
end.
(** [norm] : normalization of signed integers *)
Definition norm d :=
match d with
| Pos d => Pos (unorm d)
| Neg d =>
match nzhead d with
| Nil => Pos zero
| d => Neg d
end
end.
(** A few easy operations. For more advanced computations, use the conversions
with other Coq numeral datatypes (e.g. Z) and the operations on them. *)
Definition opp (d:int) :=
match d with
| Pos d => Neg d
| Neg d => Pos d
end.
(** For conversions with binary numbers, it is easier to operate
on little-endian numbers. *)
Fixpoint revapp (d d' : uint) :=
match d with
| Nil => d'
| D0 d => revapp d (D0 d')
| D1 d => revapp d (D1 d')
| D2 d => revapp d (D2 d')
| D3 d => revapp d (D3 d')
| D4 d => revapp d (D4 d')
| D5 d => revapp d (D5 d')
| D6 d => revapp d (D6 d')
| D7 d => revapp d (D7 d')
| D8 d => revapp d (D8 d')
| D9 d => revapp d (D9 d')
end.
Definition rev d := revapp d Nil.
Module Little.
(** Successor of little-endian numbers *)
Fixpoint succ d :=
match d with
| Nil => D1 Nil
| D0 d => D1 d
| D1 d => D2 d
| D2 d => D3 d
| D3 d => D4 d
| D4 d => D5 d
| D5 d => D6 d
| D6 d => D7 d
| D7 d => D8 d
| D8 d => D9 d
| D9 d => D0 (succ d)
end.
(** Doubling little-endian numbers *)
Fixpoint double d :=
match d with
| Nil => Nil
| D0 d => D0 (double d)
| D1 d => D2 (double d)
| D2 d => D4 (double d)
| D3 d => D6 (double d)
| D4 d => D8 (double d)
| D5 d => D0 (succ_double d)
| D6 d => D2 (succ_double d)
| D7 d => D4 (succ_double d)
| D8 d => D6 (succ_double d)
| D9 d => D8 (succ_double d)
end
with succ_double d :=
match d with
| Nil => D1 Nil
| D0 d => D1 (double d)
| D1 d => D3 (double d)
| D2 d => D5 (double d)
| D3 d => D7 (double d)
| D4 d => D9 (double d)
| D5 d => D1 (succ_double d)
| D6 d => D3 (succ_double d)
| D7 d => D5 (succ_double d)
| D8 d => D7 (succ_double d)
| D9 d => D9 (succ_double d)
end.
End Little.
|