aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FSetWeakInterface.v
blob: cec0a901f00dec9a80072636297e3cf1aba60357 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

(** * Finite sets library *)

(** Set interfaces for types with only a decidable equality, but no ordering *)

Require Export Bool.
Require Export DecidableType.
Set Implicit Arguments.
Unset Strict Implicit.

(** Compatibility of a  boolean function with respect to an equality. *)
Definition compat_bool (ASet)(eqA: A->A->Prop)(f: A-> bool) :=
  forall x y  A, eqA x y -> f x = f y.

(** Compatibility of a predicate with respect to an equality. *)
Definition compat_P (ASet)(eqA: A->A->Prop)(P : A -> Prop) :=
  forall x y  A, eqA x y -> P x -> P y.

Hint Unfold compat_bool compat_P.

(** * Non-dependent signature

    Signature [S] presents sets as purely informative programs 
    together with axioms *)

Module Type S.

  Declare Module E  DecidableType.
  Definition elt = E.t.

  Parameter t  Set. (** the abstract type of sets *)
 
  Parameter empty  t.
  (** The empty set. *)

  Parameter is_empty  t -> bool.
  (** Test whether a set is empty or not. *)

  Parameter mem  elt -> t -> bool.
  (** [mem x s] tests whether [x] belongs to the set [s]. *)

  Parameter add  elt -> t -> t.
  (** [add x s] returns a set containing all elements of [s],
  plus [x]. If [x] was already in [s], [s] is returned unchanged. *)

  Parameter singleton  elt -> t.
  (** [singleton x] returns the one-element set containing only [x]. *)

  Parameter remove  elt -> t -> t.
  (** [remove x s] returns a set containing all elements of [s],
  except [x]. If [x] was not in [s], [s] is returned unchanged. *)

  Parameter union  t -> t -> t.
  (** Set union. *)

  Parameter inter  t -> t -> t.
  (** Set intersection. *)

  Parameter diff  t -> t -> t.
  (** Set difference. *)

  Parameter equal  t -> t -> bool.
  (** [equal s1 s2] tests whether the sets [s1] and [s2] are
  equal, that is, contain equal elements. *)

  Parameter subset  t -> t -> bool.
  (** [subset s1 s2] tests whether the set [s1] is a subset of
  the set [s2]. *)

  (** Coq comment [iter] is useless in a purely functional world *)
  (**  iter (elt -> unit) -> set -> unit. i*)
  (** [iter f s] applies [f] in turn to all elements of [s].
  The order in which the elements of [s] are presented to [f]
  is unspecified. *)

  Parameter fold  forall A : Set, (elt -> A -> A) -> t -> A -> A.
  (** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
  where [x1 ... xN] are the elements of [s].
  The order in which elements of [s] are presented to [f] is
  unspecified. *)

  Parameter for_all  (elt -> bool) -> t -> bool.
  (** [for_all p s] checks if all elements of the set
  satisfy the predicate [p]. *)

  Parameter exists_  (elt -> bool) -> t -> bool.
  (** [exists p s] checks if at least one element of
  the set satisfies the predicate [p]. *)

  Parameter filter  (elt -> bool) -> t -> t.
  (** [filter p s] returns the set of all elements in [s]
  that satisfy predicate [p]. *)

  Parameter partition  (elt -> bool) -> t -> t * t.
  (** [partition p s] returns a pair of sets [(s1, s2)], where
  [s1] is the set of all the elements of [s] that satisfy the
  predicate [p], and [s2] is the set of all the elements of
  [s] that do not satisfy [p]. *)

  Parameter cardinal  t -> nat.
  (** Return the number of elements of a set. *)
  (** Coq comment nat instead of int ... *)

  Parameter elements  t -> list elt.
  (** Return the list of all elements of the given set, in any order. *)

  Parameter choose  t -> option elt.
  (** Return one element of the given set, or raise [Not_found] if
  the set is empty. Which element is chosen is unspecified.
  Equal sets could return different elements. *)
  (** Coq comment [Not_found] is represented by the option type *)

  Section Spec. 

  Variable s s' s''  t.
  Variable x y z  elt.

  Parameter In  elt -> t -> Prop.
  Definition Equal s s' = forall a : elt, In a s <-> In a s'.
  Definition Subset s s' = forall a : elt, In a s -> In a s'.
  Definition Empty s = forall a : elt, ~ In a s.
  Definition For_all (P  elt -> Prop) s := forall x, In x s -> P x.
  Definition Exists (P  elt -> Prop) s := exists x, In x s /\ P x.

  (** Specification of [In] *)
  Parameter In_1  E.eq x y -> In x s -> In y s.
 
  (** Specification of [mem] *)
  Parameter mem_1  In x s -> mem x s = true.
  Parameter mem_2  mem x s = true -> In x s. 
 
  (** Specification of [equal] *) 
  Parameter equal_1  Equal s s' -> equal s s' = true.
  Parameter equal_2  equal s s' = true -> Equal s s'.

  (** Specification of [subset] *)
  Parameter subset_1  Subset s s' -> subset s s' = true.
  Parameter subset_2  subset s s' = true -> Subset s s'.

  (** Specification of [empty] *)
  Parameter empty_1  Empty empty.

  (** Specification of [is_empty] *)
  Parameter is_empty_1  Empty s -> is_empty s = true. 
  Parameter is_empty_2  is_empty s = true -> Empty s.
 
  (** Specification of [add] *)
  Parameter add_1  E.eq x y -> In y (add x s).
  Parameter add_2  In y s -> In y (add x s).
  Parameter add_3  ~ E.eq x y -> In y (add x s) -> In y s. 

  (** Specification of [remove] *)
  Parameter remove_1  E.eq x y -> ~ In y (remove x s).
  Parameter remove_2  ~ E.eq x y -> In y s -> In y (remove x s).
  Parameter remove_3  In y (remove x s) -> In y s.

  (** Specification of [singleton] *)
  Parameter singleton_1  In y (singleton x) -> E.eq x y. 
  Parameter singleton_2  E.eq x y -> In y (singleton x). 

  (** Specification of [union] *)
  Parameter union_1  In x (union s s') -> In x s \/ In x s'.
  Parameter union_2  In x s -> In x (union s s'). 
  Parameter union_3  In x s' -> In x (union s s').

  (** Specification of [inter] *)
  Parameter inter_1  In x (inter s s') -> In x s.
  Parameter inter_2  In x (inter s s') -> In x s'.
  Parameter inter_3  In x s -> In x s' -> In x (inter s s').

  (** Specification of [diff] *)
  Parameter diff_1  In x (diff s s') -> In x s. 
  Parameter diff_2  In x (diff s s') -> ~ In x s'.
  Parameter diff_3  In x s -> ~ In x s' -> In x (diff s s').
 
  (** Specification of [fold] *)  
  Parameter fold_1  forall (A : Set) (i : A) (f : elt -> A -> A),
      fold f s i = fold_left (fun a e => f e a) (elements s) i.

  (** Specification of [cardinal] *)  
  Parameter cardinal_1  cardinal s = length (elements s).

  Section Filter.
  
  Variable f  elt -> bool.

  (** Specification of [filter] *)
  Parameter filter_1  compat_bool E.eq f -> In x (filter f s) -> In x s. 
  Parameter filter_2  compat_bool E.eq f -> In x (filter f s) -> f x = true. 
  Parameter filter_3 
      compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).

  (** Specification of [for_all] *)
  Parameter for_all_1 
      compat_bool E.eq f ->
      For_all (fun x => f x = true) s -> for_all f s = true.
  Parameter for_all_2 
      compat_bool E.eq f ->
      for_all f s = true -> For_all (fun x => f x = true) s.

  (** Specification of [exists] *)
  Parameter exists_1 
      compat_bool E.eq f ->
      Exists (fun x => f x = true) s -> exists_ f s = true.
  Parameter exists_2 
      compat_bool E.eq f ->
      exists_ f s = true -> Exists (fun x => f x = true) s.

  (** Specification of [partition] *)
  Parameter partition_1 
      compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
  Parameter partition_2 
      compat_bool E.eq f ->
      Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).

  (** Specification of [elements] *)
  Parameter elements_1  In x s -> InA E.eq x (elements s).
  Parameter elements_2  InA E.eq x (elements s) -> In x s.

  (** Specification of [choose] *)
  Parameter choose_1  choose s = Some x -> In x s.
  Parameter choose_2  choose s = None -> Empty s.

  End Filter.
  End Spec.

  Hint Immediate In_1.
  
  Hint Resolve mem_1 mem_2 equal_1 equal_2 subset_1 subset_2 empty_1
    is_empty_1 is_empty_2 choose_1 choose_2 add_1 add_2 add_3 remove_1
    remove_2 remove_3 singleton_1 singleton_2 union_1 union_2 union_3 inter_1
    inter_2 inter_3 diff_1 diff_2 diff_3 filter_1 filter_2 filter_3 for_all_1
    for_all_2 exists_1 exists_2 partition_1 partition_2 elements_1 elements_2.

End S.