aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FSetFacts.v
blob: 2bf0c1cae4b10ca4e6c31726f9e82edef62e73f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

(** * Finite sets library *)

(** This functor derives additional facts from [FSetInterface.S]. These
  facts are mainly the specifications of [FSetInterface.S] written using 
  different styles: equivalence and boolean equalities. 
  Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
*)

Require Import DecidableTypeEx.
Require Export FSetInterface. 
Set Implicit Arguments.
Unset Strict Implicit.

(** First, a functor for Weak Sets. Since the signature [WS] includes
    an EqualityType and not a stronger DecidableType, this functor 
    should take two arguments in order to compensate this. *)

Module WFacts (Import E : DecidableType)(Import M : WSfun E).

Notation eq_dec := E.eq_dec.
Definition eqb x y := if eq_dec x y then true else false.

(** * Specifications written using equivalences *)

Section IffSpec. 
Variable s s' s'' : t.
Variable x y z : elt.

Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s).
Proof.
split; apply In_1; auto.
Qed.

Lemma mem_iff : In x s <-> mem x s = true.
Proof.
split; [apply mem_1|apply mem_2].
Qed.

Lemma not_mem_iff : ~In x s <-> mem x s = false.
Proof.
rewrite mem_iff; destruct (mem x s); intuition.
Qed.

Lemma equal_iff : s[=]s' <-> equal s s' = true.
Proof. 
split; [apply equal_1|apply equal_2].
Qed.

Lemma subset_iff : s[<=]s' <-> subset s s' = true.
Proof. 
split; [apply subset_1|apply subset_2].
Qed.

Lemma empty_iff : In x empty <-> False.
Proof.
intuition; apply (empty_1 H).
Qed.

Lemma is_empty_iff : Empty s <-> is_empty s = true. 
Proof. 
split; [apply is_empty_1|apply is_empty_2].
Qed.

Lemma singleton_iff : In y (singleton x) <-> E.eq x y.
Proof.
split; [apply singleton_1|apply singleton_2].
Qed.

Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s.
Proof. 
split; [ | destruct 1; [apply add_1|apply add_2]]; auto.
destruct (eq_dec x y) as [E|E]; auto.
intro H; right; exact (add_3 E H).
Qed.

Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s)  <-> In y s).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.

Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y.
Proof.
split; [split; [apply remove_3 with x |] | destruct 1; apply remove_2]; auto.
intro.
apply (remove_1 H0 H).
Qed.

Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.

Lemma union_iff : In x (union s s') <-> In x s \/ In x s'.
Proof.
split; [apply union_1 | destruct 1; [apply union_2|apply union_3]]; auto.
Qed.

Lemma inter_iff : In x (inter s s') <-> In x s /\ In x s'.
Proof.
split; [split; [apply inter_1 with s' | apply inter_2 with s] | destruct 1; apply inter_3]; auto.
Qed.

Lemma diff_iff : In x (diff s s') <-> In x s /\ ~ In x s'.
Proof.
split; [split; [apply diff_1 with s' | apply diff_2 with s] | destruct 1; apply diff_3]; auto.
Qed.

Variable f : elt->bool.

Lemma filter_iff :  compat_bool E.eq f -> (In x (filter f s) <-> In x s /\ f x = true).
Proof. 
split; [split; [apply filter_1 with f | apply filter_2 with s] | destruct 1; apply filter_3]; auto. 
Qed.

Lemma for_all_iff : compat_bool E.eq f ->
  (For_all (fun x => f x = true) s <-> for_all f s = true).
Proof.
split; [apply for_all_1 | apply for_all_2]; auto.
Qed.
 
Lemma exists_iff : compat_bool E.eq f ->
  (Exists (fun x => f x = true) s <-> exists_ f s = true).
Proof.
split; [apply exists_1 | apply exists_2]; auto.
Qed.

Lemma elements_iff : In x s <-> InA E.eq x (elements s).
Proof. 
split; [apply elements_1 | apply elements_2].
Qed.

End IffSpec.

(** Useful tactic for simplifying expressions like [In y (add x (union s s'))] *)
  
Ltac set_iff := 
 repeat (progress (
  rewrite add_iff || rewrite remove_iff || rewrite singleton_iff 
  || rewrite union_iff || rewrite inter_iff || rewrite diff_iff
  || rewrite empty_iff)).

(**  * Specifications written using boolean predicates *)

Section BoolSpec.
Variable s s' s'' : t.
Variable x y z : elt.

Lemma mem_b : E.eq x y -> mem x s = mem y s.
Proof. 
intros.
generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H).
destruct (mem x s); destruct (mem y s); intuition.
Qed.

Lemma empty_b : mem y empty = false.
Proof.
generalize (empty_iff y)(mem_iff empty y).
destruct (mem y empty); intuition.
Qed.

Lemma add_b : mem y (add x s) = eqb x y || mem y s.
Proof.
generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.

Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s.
Proof.
intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H).
destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.

Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y).
Proof.
generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition.
Qed.

Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s.
Proof.
intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H).
destruct (mem y s); destruct (mem y (remove x s)); intuition.
Qed.

Lemma singleton_b : mem y (singleton x) = eqb x y.
Proof. 
generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y (singleton x)); intuition.
Qed.

Lemma union_b : mem x (union s s') = mem x s || mem x s'.
Proof.
generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition.
Qed.

Lemma inter_b : mem x (inter s s') = mem x s && mem x s'.
Proof.
generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition.
Qed.

Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s').
Proof.
generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition.
Qed.

Lemma elements_b : mem x s = existsb (eqb x) (elements s).
Proof.
generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)).
rewrite InA_alt.
destruct (mem x s); destruct (existsb (eqb x) (elements s)); auto; intros.
symmetry.
rewrite H1.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); [ intuition |].
exists a; intuition.
unfold eqb; destruct (eq_dec x a); auto.
rewrite <- H.
rewrite H0.
destruct H1 as (H1,_).
destruct H1 as (a,(Ha1,Ha2)); [intuition|].
exists a; intuition.
unfold eqb in *; destruct (eq_dec x a); auto; discriminate.
Qed.

Variable f : elt->bool.

Lemma filter_b : compat_bool E.eq f -> mem x (filter f s) = mem x s && f x.
Proof. 
intros.
generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H).
destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition.
Qed.

Lemma for_all_b : compat_bool E.eq f ->
  for_all f s = forallb f (elements s).
Proof.
intros.
generalize (forallb_forall f (elements s))(for_all_iff s H)(elements_iff s).
unfold For_all.
destruct (forallb f (elements s)); destruct (for_all f s); auto; intros.
rewrite <- H1; intros.
destruct H0 as (H0,_).
rewrite (H2 x0) in H3.
rewrite (InA_alt E.eq x0 (elements s)) in H3.
destruct H3 as (a,(Ha1,Ha2)).
rewrite (H _ _ Ha1).
apply H0; auto.
symmetry.
rewrite H0; intros.
destruct H1 as (_,H1).
apply H1; auto.
rewrite H2.
rewrite InA_alt; eauto.
Qed.

Lemma exists_b : compat_bool E.eq f -> 
  exists_ f s = existsb f (elements s).
Proof.
intros.
generalize (existsb_exists f (elements s))(exists_iff s H)(elements_iff s).
unfold Exists.
destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
rewrite <- H1; intros.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); auto.
exists a; split; auto.
rewrite H2; rewrite InA_alt; eauto.
symmetry.
rewrite H0.
destruct H1 as (_,H1).
destruct H1 as (a,(Ha1,Ha2)); auto.
rewrite (H2 a) in Ha1.
rewrite (InA_alt E.eq a (elements s)) in Ha1.
destruct Ha1 as (b,(Hb1,Hb2)).
exists b; auto.
rewrite <- (H _ _ Hb1); auto.
Qed.

End BoolSpec.

(** * [E.eq] and [Equal] are setoid equalities *)

Definition E_ST : Setoid_Theory elt E.eq.
Proof.
constructor; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
Qed.

Definition Equal_ST : Setoid_Theory t Equal.
Proof. 
constructor; [apply eq_refl | apply eq_sym | apply eq_trans].
Qed.

Add Relation elt E.eq 
 reflexivity proved by E.eq_refl 
 symmetry proved by E.eq_sym
 transitivity proved by E.eq_trans 
 as EltSetoid.

Add Relation t Equal 
 reflexivity proved by eq_refl 
 symmetry proved by eq_sym
 transitivity proved by eq_trans 
 as EqualSetoid.

Add Morphism In with signature E.eq ==> Equal ==> iff as In_m.
Proof.
unfold Equal; intros x y H s s' H0.
rewrite (In_eq_iff s H); auto.
Qed.

Add Morphism is_empty : is_empty_m.
Proof.
unfold Equal; intros s s' H.
generalize (is_empty_iff s)(is_empty_iff s').
destruct (is_empty s); destruct (is_empty s'); 
 unfold Empty; auto; intros.
symmetry.
rewrite <- H1; intros a Ha.
rewrite <- (H a) in Ha.
destruct H0 as (_,H0).
exact (H0 (refl_equal true) _ Ha).
rewrite <- H0; intros a Ha.
rewrite (H a) in Ha.
destruct H1 as (_,H1).
exact (H1 (refl_equal true) _ Ha).
Qed.

Add Morphism Empty with signature Equal ==> iff as Empty_m.
Proof. 
intros; do 2 rewrite is_empty_iff; rewrite H; intuition.
Qed.

Add Morphism mem : mem_m.
Proof.
unfold Equal; intros x y H s s' H0.
generalize (H0 x); clear H0; rewrite (In_eq_iff s' H).
generalize (mem_iff s x)(mem_iff s' y).
destruct (mem x s); destruct (mem y s'); intuition.
Qed.

Add Morphism singleton : singleton_m.
Proof.
unfold Equal; intros x y H a.
do 2 rewrite singleton_iff; split; intros.
apply E.eq_trans with x; auto.
apply E.eq_trans with y; auto.
Qed.

Add Morphism add : add_m.
Proof.
unfold Equal; intros x y H s s' H0 a.
do 2 rewrite add_iff; rewrite H; rewrite H0; intuition.
Qed.

Add Morphism remove : remove_m.
Proof.
unfold Equal; intros x y H s s' H0 a.
do 2 rewrite remove_iff; rewrite H; rewrite H0; intuition.
Qed.

Add Morphism union : union_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite union_iff; rewrite H; rewrite H0; intuition.
Qed.

Add Morphism inter : inter_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite inter_iff; rewrite H; rewrite H0; intuition.
Qed.

Add Morphism diff : diff_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite diff_iff; rewrite H; rewrite H0; intuition.
Qed.

Add Morphism Subset with signature Equal ==> Equal ==> iff as  Subset_m.
Proof. 
unfold Equal, Subset; firstorder.
Qed.

Add Morphism subset : subset_m.
Proof.
intros s s' H s'' s''' H0.
generalize (subset_iff s s'') (subset_iff s' s'''). 
destruct (subset s s''); destruct (subset s' s'''); auto; intros.
rewrite H in H1; rewrite H0 in H1; intuition.
rewrite H in H1; rewrite H0 in H1; intuition.
Qed.

Add Morphism equal : equal_m.
Proof.
intros s s' H s'' s''' H0.
generalize (equal_iff s s'') (equal_iff s' s''').
destruct (equal s s''); destruct (equal s' s'''); auto; intros.
rewrite H in H1; rewrite H0 in H1; intuition.
rewrite H in H1; rewrite H0 in H1; intuition.
Qed.


(* [Subset] is a setoid order *)

Lemma Subset_refl : forall s, s[<=]s.
Proof. red; auto. Defined.

Lemma Subset_trans : forall s s' s'', s[<=]s'->s'[<=]s''->s[<=]s''.
Proof. unfold Subset; eauto. Defined.

Add Relation t Subset 
 reflexivity proved by Subset_refl
 transitivity proved by Subset_trans
 as SubsetSetoid.
(* NB: for the moment, it is important to use Defined and not Qed in 
   the two previous lemmas, in order to allow conversion of 
   SubsetSetoid coming from separate Facts modules. See bug #1738. *)

Add Morphism In with signature E.eq ==> Subset ++> impl as In_s_m.
Proof.
unfold Subset, impl; intros; eauto with set.
Qed.

Add Morphism Empty with signature Subset --> impl as Empty_s_m.
Proof. 
unfold Subset, Empty, impl; firstorder.
Qed.

Add Morphism add with signature E.eq ==> Subset ++> Subset as add_s_m.
Proof.
unfold Subset; intros x y H s s' H0 a.
do 2 rewrite add_iff; rewrite H; intuition.
Qed.

Add Morphism remove with signature E.eq ==> Subset ++> Subset as remove_s_m.
Proof.
unfold Subset; intros x y H s s' H0 a.
do 2 rewrite remove_iff; rewrite H; intuition.
Qed.

Add Morphism union with signature Subset ++> Subset ++> Subset as union_s_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite union_iff; intuition.
Qed.

Add Morphism inter with signature Subset ++> Subset ++> Subset as inter_s_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite inter_iff; intuition.
Qed.

Add Morphism diff with signature Subset ++> Subset --> Subset as diff_s_m.
Proof.
unfold Subset; intros s s' H s'' s''' H0 a.
do 2 rewrite diff_iff; intuition.
Qed.

(* [fold], [filter], [for_all], [exists_] and [partition] cannot be proved morphism
   without additional hypothesis on [f]. For instance: *)

Lemma filter_equal : forall f, compat_bool E.eq f -> 
  forall s s', s[=]s' -> filter f s [=] filter f s'.
Proof.
unfold Equal; intros; repeat rewrite filter_iff; auto; rewrite H0; tauto.
Qed.

Lemma filter_subset : forall f, compat_bool E.eq f -> 
  forall s s', s[<=]s' -> filter f s [<=] filter f s'.
Proof.
unfold Subset; intros; rewrite filter_iff in *; intuition.
Qed.

(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid 
   structures on [list elt] and [option elt]. *)

(* Later:
Add Morphism cardinal ; cardinal_m.
*)

End WFacts.


(** Now comes a special version dedicated to full sets. For this 
    one, only one argument [(M:S)] is necessary. *)

Module Facts (M:S).
  Module D:=OT_as_DT M.E.
  Include WFacts D M.
End Facts.