1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(** * Finite sets library *)
(** This module proves many properties of finite sets that
are consequences of the axiomatization in [FsetInterface]
Contrary to the functor in [FsetProperties] it uses
sets operations instead of predicates over sets, i.e.
[mem x s=true] instead of [In x s],
[equal s s'=true] instead of [Equal s s'], etc. *)
Require Import FSetProperties Zerob Sumbool Omega DecidableTypeEx.
Module WEqProperties_fun (Import E:DecidableType)(M:WSfun E).
Module Import MP := WProperties_fun E M.
Import FM Dec.F.
Import M.
Definition Add := MP.Add.
Section BasicProperties.
(** Some old specifications written with boolean equalities. *)
Variable s s' s'': t.
Variable x y z : elt.
Lemma mem_eq:
E.eq x y -> mem x s=mem y s.
Proof.
intro H; rewrite H; auto.
Qed.
Lemma equal_mem_1:
(forall a, mem a s=mem a s') -> equal s s'=true.
Proof.
intros; apply equal_1; unfold Equal; intros.
do 2 rewrite mem_iff; rewrite H; tauto.
Qed.
Lemma equal_mem_2:
equal s s'=true -> forall a, mem a s=mem a s'.
Proof.
intros; rewrite (equal_2 H); auto.
Qed.
Lemma subset_mem_1:
(forall a, mem a s=true->mem a s'=true) -> subset s s'=true.
Proof.
intros; apply subset_1; unfold Subset; intros a.
do 2 rewrite mem_iff; auto.
Qed.
Lemma subset_mem_2:
subset s s'=true -> forall a, mem a s=true -> mem a s'=true.
Proof.
intros H a; do 2 rewrite <- mem_iff; apply subset_2; auto.
Qed.
Lemma empty_mem: mem x empty=false.
Proof.
rewrite <- not_mem_iff; auto with set.
Qed.
Lemma is_empty_equal_empty: is_empty s = equal s empty.
Proof.
apply bool_1; split; intros.
auto with set.
rewrite <- is_empty_iff; auto with set.
Qed.
Lemma choose_mem_1: choose s=Some x -> mem x s=true.
Proof.
auto with set.
Qed.
Lemma choose_mem_2: choose s=None -> is_empty s=true.
Proof.
auto with set.
Qed.
Lemma add_mem_1: mem x (add x s)=true.
Proof.
auto with set.
Qed.
Lemma add_mem_2: ~E.eq x y -> mem y (add x s)=mem y s.
Proof.
apply add_neq_b.
Qed.
Lemma remove_mem_1: mem x (remove x s)=false.
Proof.
rewrite <- not_mem_iff; auto with set.
Qed.
Lemma remove_mem_2: ~E.eq x y -> mem y (remove x s)=mem y s.
Proof.
apply remove_neq_b.
Qed.
Lemma singleton_equal_add:
equal (singleton x) (add x empty)=true.
Proof.
rewrite (singleton_equal_add x); auto with set.
Qed.
Lemma union_mem:
mem x (union s s')=mem x s || mem x s'.
Proof.
apply union_b.
Qed.
Lemma inter_mem:
mem x (inter s s')=mem x s && mem x s'.
Proof.
apply inter_b.
Qed.
Lemma diff_mem:
mem x (diff s s')=mem x s && negb (mem x s').
Proof.
apply diff_b.
Qed.
(** properties of [mem] *)
Lemma mem_3 : ~In x s -> mem x s=false.
Proof.
intros; rewrite <- not_mem_iff; auto.
Qed.
Lemma mem_4 : mem x s=false -> ~In x s.
Proof.
intros; rewrite not_mem_iff; auto.
Qed.
(** Properties of [equal] *)
Lemma equal_refl: equal s s=true.
Proof.
auto with set.
Qed.
Lemma equal_sym: equal s s'=equal s' s.
Proof.
intros; apply bool_1; do 2 rewrite <- equal_iff; intuition.
Qed.
Lemma equal_trans:
equal s s'=true -> equal s' s''=true -> equal s s''=true.
Proof.
intros; rewrite (equal_2 H); auto.
Qed.
Lemma equal_equal:
equal s s'=true -> equal s s''=equal s' s''.
Proof.
intros; rewrite (equal_2 H); auto.
Qed.
Lemma equal_cardinal:
equal s s'=true -> cardinal s=cardinal s'.
Proof.
auto with set.
Qed.
(* Properties of [subset] *)
Lemma subset_refl: subset s s=true.
Proof.
auto with set.
Qed.
Lemma subset_antisym:
subset s s'=true -> subset s' s=true -> equal s s'=true.
Proof.
auto with set.
Qed.
Lemma subset_trans:
subset s s'=true -> subset s' s''=true -> subset s s''=true.
Proof.
do 3 rewrite <- subset_iff; intros.
apply subset_trans with s'; auto.
Qed.
Lemma subset_equal:
equal s s'=true -> subset s s'=true.
Proof.
auto with set.
Qed.
(** Properties of [choose] *)
Lemma choose_mem_3:
is_empty s=false -> {x:elt|choose s=Some x /\ mem x s=true}.
Proof.
intros.
generalize (@choose_1 s) (@choose_2 s).
destruct (choose s);intros.
exists e;auto with set.
generalize (H1 Logic.eq_refl); clear H1.
intros; rewrite (is_empty_1 H1) in H; discriminate.
Qed.
Lemma choose_mem_4: choose empty=None.
Proof.
generalize (@choose_1 empty).
case (@choose empty);intros;auto.
elim (@empty_1 e); auto.
Qed.
(** Properties of [add] *)
Lemma add_mem_3:
mem y s=true -> mem y (add x s)=true.
Proof.
auto with set.
Qed.
Lemma add_equal:
mem x s=true -> equal (add x s) s=true.
Proof.
auto with set.
Qed.
(** Properties of [remove] *)
Lemma remove_mem_3:
mem y (remove x s)=true -> mem y s=true.
Proof.
rewrite remove_b; intros H;destruct (andb_prop _ _ H); auto.
Qed.
Lemma remove_equal:
mem x s=false -> equal (remove x s) s=true.
Proof.
intros; apply equal_1; apply remove_equal.
rewrite not_mem_iff; auto.
Qed.
Lemma add_remove:
mem x s=true -> equal (add x (remove x s)) s=true.
Proof.
intros; apply equal_1; apply add_remove; auto with set.
Qed.
Lemma remove_add:
mem x s=false -> equal (remove x (add x s)) s=true.
Proof.
intros; apply equal_1; apply remove_add; auto.
rewrite not_mem_iff; auto.
Qed.
(** Properties of [is_empty] *)
Lemma is_empty_cardinal: is_empty s = zerob (cardinal s).
Proof.
intros; apply bool_1; split; intros.
rewrite MP.cardinal_1; simpl; auto with set.
assert (cardinal s = 0) by (apply zerob_true_elim; auto).
auto with set.
Qed.
(** Properties of [singleton] *)
Lemma singleton_mem_1: mem x (singleton x)=true.
Proof.
auto with set.
Qed.
Lemma singleton_mem_2: ~E.eq x y -> mem y (singleton x)=false.
Proof.
intros; rewrite singleton_b.
unfold eqb; destruct (E.eq_dec x y); intuition.
Qed.
Lemma singleton_mem_3: mem y (singleton x)=true -> E.eq x y.
Proof.
intros; apply singleton_1; auto with set.
Qed.
(** Properties of [union] *)
Lemma union_sym:
equal (union s s') (union s' s)=true.
Proof.
auto with set.
Qed.
Lemma union_subset_equal:
subset s s'=true -> equal (union s s') s'=true.
Proof.
auto with set.
Qed.
Lemma union_equal_1:
equal s s'=true-> equal (union s s'') (union s' s'')=true.
Proof.
auto with set.
Qed.
Lemma union_equal_2:
equal s' s''=true-> equal (union s s') (union s s'')=true.
Proof.
auto with set.
Qed.
Lemma union_assoc:
equal (union (union s s') s'') (union s (union s' s''))=true.
Proof.
auto with set.
Qed.
Lemma add_union_singleton:
equal (add x s) (union (singleton x) s)=true.
Proof.
auto with set.
Qed.
Lemma union_add:
equal (union (add x s) s') (add x (union s s'))=true.
Proof.
auto with set.
Qed.
(* caracterisation of [union] via [subset] *)
Lemma union_subset_1: subset s (union s s')=true.
Proof.
auto with set.
Qed.
Lemma union_subset_2: subset s' (union s s')=true.
Proof.
auto with set.
Qed.
Lemma union_subset_3:
subset s s''=true -> subset s' s''=true ->
subset (union s s') s''=true.
Proof.
intros; apply subset_1; apply union_subset_3; auto with set.
Qed.
(** Properties of [inter] *)
Lemma inter_sym: equal (inter s s') (inter s' s)=true.
Proof.
auto with set.
Qed.
Lemma inter_subset_equal:
subset s s'=true -> equal (inter s s') s=true.
Proof.
auto with set.
Qed.
Lemma inter_equal_1:
equal s s'=true -> equal (inter s s'') (inter s' s'')=true.
Proof.
auto with set.
Qed.
Lemma inter_equal_2:
equal s' s''=true -> equal (inter s s') (inter s s'')=true.
Proof.
auto with set.
Qed.
Lemma inter_assoc:
equal (inter (inter s s') s'') (inter s (inter s' s''))=true.
Proof.
auto with set.
Qed.
Lemma union_inter_1:
equal (inter (union s s') s'') (union (inter s s'') (inter s' s''))=true.
Proof.
auto with set.
Qed.
Lemma union_inter_2:
equal (union (inter s s') s'') (inter (union s s'') (union s' s''))=true.
Proof.
auto with set.
Qed.
Lemma inter_add_1: mem x s'=true ->
equal (inter (add x s) s') (add x (inter s s'))=true.
Proof.
auto with set.
Qed.
Lemma inter_add_2: mem x s'=false ->
equal (inter (add x s) s') (inter s s')=true.
Proof.
intros; apply equal_1; apply inter_add_2.
rewrite not_mem_iff; auto.
Qed.
(* caracterisation of [union] via [subset] *)
Lemma inter_subset_1: subset (inter s s') s=true.
Proof.
auto with set.
Qed.
Lemma inter_subset_2: subset (inter s s') s'=true.
Proof.
auto with set.
Qed.
Lemma inter_subset_3:
subset s'' s=true -> subset s'' s'=true ->
subset s'' (inter s s')=true.
Proof.
intros; apply subset_1; apply inter_subset_3; auto with set.
Qed.
(** Properties of [diff] *)
Lemma diff_subset: subset (diff s s') s=true.
Proof.
auto with set.
Qed.
Lemma diff_subset_equal:
subset s s'=true -> equal (diff s s') empty=true.
Proof.
auto with set.
Qed.
Lemma remove_inter_singleton:
equal (remove x s) (diff s (singleton x))=true.
Proof.
auto with set.
Qed.
Lemma diff_inter_empty:
equal (inter (diff s s') (inter s s')) empty=true.
Proof.
auto with set.
Qed.
Lemma diff_inter_all:
equal (union (diff s s') (inter s s')) s=true.
Proof.
auto with set.
Qed.
End BasicProperties.
Hint Immediate empty_mem is_empty_equal_empty add_mem_1
remove_mem_1 singleton_equal_add union_mem inter_mem
diff_mem equal_sym add_remove remove_add : set.
Hint Resolve equal_mem_1 subset_mem_1 choose_mem_1
choose_mem_2 add_mem_2 remove_mem_2 equal_refl equal_equal
subset_refl subset_equal subset_antisym
add_mem_3 add_equal remove_mem_3 remove_equal : set.
(** General recursion principle *)
Lemma set_rec: forall (P:t->Type),
(forall s s', equal s s'=true -> P s -> P s') ->
(forall s x, mem x s=false -> P s -> P (add x s)) ->
P empty -> forall s, P s.
Proof.
intros.
apply set_induction; auto; intros.
apply X with empty; auto with set.
apply X with (add x s0); auto with set.
apply equal_1; intro a; rewrite add_iff; rewrite (H0 a); tauto.
apply X0; auto with set; apply mem_3; auto.
Qed.
(** Properties of [fold] *)
Lemma exclusive_set : forall s s' x,
~(In x s/\In x s') <-> mem x s && mem x s'=false.
Proof.
intros; do 2 rewrite mem_iff.
destruct (mem x s); destruct (mem x s'); intuition.
Qed.
Section Fold.
Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
Variables (i:A).
Variables (s s':t)(x:elt).
Lemma fold_empty: (fold f empty i) = i.
Proof.
apply fold_empty; auto.
Qed.
Lemma fold_equal:
equal s s'=true -> eqA (fold f s i) (fold f s' i).
Proof.
intros; apply fold_equal with (eqA:=eqA); auto with set.
Qed.
Lemma fold_add:
mem x s=false -> eqA (fold f (add x s) i) (f x (fold f s i)).
Proof.
intros; apply fold_add with (eqA:=eqA); auto.
rewrite not_mem_iff; auto.
Qed.
Lemma add_fold:
mem x s=true -> eqA (fold f (add x s) i) (fold f s i).
Proof.
intros; apply add_fold with (eqA:=eqA); auto with set.
Qed.
Lemma remove_fold_1:
mem x s=true -> eqA (f x (fold f (remove x s) i)) (fold f s i).
Proof.
intros; apply remove_fold_1 with (eqA:=eqA); auto with set.
Qed.
Lemma remove_fold_2:
mem x s=false -> eqA (fold f (remove x s) i) (fold f s i).
Proof.
intros; apply remove_fold_2 with (eqA:=eqA); auto.
rewrite not_mem_iff; auto.
Qed.
Lemma fold_union:
(forall x, mem x s && mem x s'=false) ->
eqA (fold f (union s s') i) (fold f s (fold f s' i)).
Proof.
intros; apply fold_union with (eqA:=eqA); auto.
intros; rewrite exclusive_set; auto.
Qed.
End Fold.
(** Properties of [cardinal] *)
Lemma add_cardinal_1:
forall s x, mem x s=true -> cardinal (add x s)=cardinal s.
Proof.
auto with set.
Qed.
Lemma add_cardinal_2:
forall s x, mem x s=false -> cardinal (add x s)=S (cardinal s).
Proof.
intros; apply add_cardinal_2; auto.
rewrite not_mem_iff; auto.
Qed.
Lemma remove_cardinal_1:
forall s x, mem x s=true -> S (cardinal (remove x s))=cardinal s.
Proof.
intros; apply remove_cardinal_1; auto with set.
Qed.
Lemma remove_cardinal_2:
forall s x, mem x s=false -> cardinal (remove x s)=cardinal s.
Proof.
intros; apply Equal_cardinal; apply equal_2; auto with set.
Qed.
Lemma union_cardinal:
forall s s', (forall x, mem x s && mem x s'=false) ->
cardinal (union s s')=cardinal s+cardinal s'.
Proof.
intros; apply union_cardinal; auto; intros.
rewrite exclusive_set; auto.
Qed.
Lemma subset_cardinal:
forall s s', subset s s'=true -> cardinal s<=cardinal s'.
Proof.
intros; apply subset_cardinal; auto with set.
Qed.
Section Bool.
(** Properties of [filter] *)
Variable f:elt->bool.
Variable Comp: Proper (E.eq==>Logic.eq) f.
Let Comp' : Proper (E.eq==>Logic.eq) (fun x =>negb (f x)).
Proof.
repeat red; intros; f_equal; auto.
Qed.
Lemma filter_mem: forall s x, mem x (filter f s)=mem x s && f x.
Proof.
intros; apply filter_b; auto.
Qed.
Lemma for_all_filter:
forall s, for_all f s=is_empty (filter (fun x => negb (f x)) s).
Proof.
intros; apply bool_1; split; intros.
apply is_empty_1.
unfold Empty; intros.
rewrite filter_iff; auto.
red; destruct 1.
rewrite <- (@for_all_iff s f) in H; auto.
rewrite (H a H0) in H1; discriminate.
apply for_all_1; auto; red; intros.
revert H; rewrite <- is_empty_iff.
unfold Empty; intro H; generalize (H x); clear H.
rewrite filter_iff; auto.
destruct (f x); auto.
Qed.
Lemma exists_filter :
forall s, exists_ f s=negb (is_empty (filter f s)).
Proof.
intros; apply bool_1; split; intros.
destruct (exists_2 Comp H) as (a,(Ha1,Ha2)).
apply bool_6.
red; intros; apply (@is_empty_2 _ H0 a); auto with set.
generalize (@choose_1 (filter f s)) (@choose_2 (filter f s)).
destruct (choose (filter f s)).
intros H0 _; apply exists_1; auto.
exists e; generalize (H0 e); rewrite filter_iff; auto.
intros _ H0.
rewrite (is_empty_1 (H0 Logic.eq_refl)) in H; auto; discriminate.
Qed.
Lemma partition_filter_1:
forall s, equal (fst (partition f s)) (filter f s)=true.
Proof.
auto with set.
Qed.
Lemma partition_filter_2:
forall s, equal (snd (partition f s)) (filter (fun x => negb (f x)) s)=true.
Proof.
auto with set.
Qed.
Lemma filter_add_1 : forall s x, f x = true ->
filter f (add x s) [=] add x (filter f s).
Proof.
red; intros; set_iff; do 2 (rewrite filter_iff; auto); set_iff.
intuition.
rewrite <- H; apply Comp; auto.
Qed.
Lemma filter_add_2 : forall s x, f x = false ->
filter f (add x s) [=] filter f s.
Proof.
red; intros; do 2 (rewrite filter_iff; auto); set_iff.
intuition.
assert (f x = f a) by (apply Comp; auto).
rewrite H in H1; rewrite H2 in H1; discriminate.
Qed.
Lemma add_filter_1 : forall s s' x,
f x=true -> (Add x s s') -> (Add x (filter f s) (filter f s')).
Proof.
unfold Add, MP.Add; intros.
repeat rewrite filter_iff; auto.
rewrite H0; clear H0.
assert (E.eq x y -> f y = true) by
(intro H0; rewrite <- (Comp _ _ H0); auto).
tauto.
Qed.
Lemma add_filter_2 : forall s s' x,
f x=false -> (Add x s s') -> filter f s [=] filter f s'.
Proof.
unfold Add, MP.Add, Equal; intros.
repeat rewrite filter_iff; auto.
rewrite H0; clear H0.
assert (f a = true -> ~E.eq x a).
intros H0 H1.
rewrite (Comp _ _ H1) in H.
rewrite H in H0; discriminate.
tauto.
Qed.
Lemma union_filter: forall f g, (compat_bool E.eq f) -> (compat_bool E.eq g) ->
forall s, union (filter f s) (filter g s) [=] filter (fun x=>orb (f x) (g x)) s.
Proof.
clear Comp' Comp f.
intros.
assert (compat_bool E.eq (fun x => orb (f x) (g x))).
unfold compat_bool, Proper, respectful; intros.
rewrite (H x y H1); rewrite (H0 x y H1); auto.
unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto.
assert (f a || g a = true <-> f a = true \/ g a = true).
split; auto with bool.
intro H3; destruct (orb_prop _ _ H3); auto.
tauto.
Qed.
Lemma filter_union: forall s s', filter f (union s s') [=] union (filter f s) (filter f s').
Proof.
unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto; set_iff; tauto.
Qed.
(** Properties of [for_all] *)
Lemma for_all_mem_1: forall s,
(forall x, (mem x s)=true->(f x)=true) -> (for_all f s)=true.
Proof.
intros.
rewrite for_all_filter; auto.
rewrite is_empty_equal_empty.
apply equal_mem_1;intros.
rewrite filter_b; auto.
rewrite empty_mem.
generalize (H a); case (mem a s);intros;auto.
rewrite H0;auto.
Qed.
Lemma for_all_mem_2: forall s,
(for_all f s)=true -> forall x,(mem x s)=true -> (f x)=true.
Proof.
intros.
rewrite for_all_filter in H; auto.
rewrite is_empty_equal_empty in H.
generalize (equal_mem_2 _ _ H x).
rewrite filter_b; auto.
rewrite empty_mem.
rewrite H0; simpl;intros.
rewrite <- negb_false_iff; auto.
Qed.
Lemma for_all_mem_3:
forall s x,(mem x s)=true -> (f x)=false -> (for_all f s)=false.
Proof.
intros.
apply (bool_eq_ind (for_all f s));intros;auto.
rewrite for_all_filter in H1; auto.
rewrite is_empty_equal_empty in H1.
generalize (equal_mem_2 _ _ H1 x).
rewrite filter_b; auto.
rewrite empty_mem.
rewrite H.
rewrite H0.
simpl;auto.
Qed.
Lemma for_all_mem_4:
forall s, for_all f s=false -> {x:elt | mem x s=true /\ f x=false}.
Proof.
intros.
rewrite for_all_filter in H; auto.
destruct (choose_mem_3 _ H) as (x,(H0,H1));intros.
exists x.
rewrite filter_b in H1; auto.
elim (andb_prop _ _ H1).
split;auto.
rewrite <- negb_true_iff; auto.
Qed.
(** Properties of [exists] *)
Lemma for_all_exists:
forall s, exists_ f s = negb (for_all (fun x =>negb (f x)) s).
Proof.
intros.
rewrite for_all_b; auto.
rewrite exists_b; auto.
induction (elements s); simpl; auto.
destruct (f a); simpl; auto.
Qed.
End Bool.
Section Bool'.
Variable f:elt->bool.
Variable Comp: compat_bool E.eq f.
Let Comp' : compat_bool E.eq (fun x =>negb (f x)).
Proof.
unfold compat_bool, Proper, respectful in *; intros; f_equal; auto.
Qed.
Lemma exists_mem_1:
forall s, (forall x, mem x s=true->f x=false) -> exists_ f s=false.
Proof.
intros.
rewrite for_all_exists; auto.
rewrite for_all_mem_1;auto with bool.
intros;generalize (H x H0);intros.
rewrite negb_true_iff; auto.
Qed.
Lemma exists_mem_2:
forall s, exists_ f s=false -> forall x, mem x s=true -> f x=false.
Proof.
intros.
rewrite for_all_exists in H; auto.
rewrite negb_false_iff in H.
rewrite <- negb_true_iff.
apply for_all_mem_2 with (2:=H); auto.
Qed.
Lemma exists_mem_3:
forall s x, mem x s=true -> f x=true -> exists_ f s=true.
Proof.
intros.
rewrite for_all_exists; auto.
rewrite negb_true_iff.
apply for_all_mem_3 with x;auto.
rewrite negb_false_iff; auto.
Qed.
Lemma exists_mem_4:
forall s, exists_ f s=true -> {x:elt | (mem x s)=true /\ (f x)=true}.
Proof.
intros.
rewrite for_all_exists in H; auto.
rewrite negb_true_iff in H.
elim (for_all_mem_4 (fun x =>negb (f x)) Comp' s);intros;auto.
elim p;intros.
exists x;split;auto.
rewrite <-negb_false_iff; auto.
Qed.
End Bool'.
Section Sum.
(** Adding a valuation function on all elements of a set. *)
Definition sum (f:elt -> nat)(s:t) := fold (fun x => plus (f x)) s 0.
Notation compat_opL := (compat_op E.eq Logic.eq).
Notation transposeL := (transpose Logic.eq).
Lemma sum_plus :
forall f g, Proper (E.eq==>Logic.eq) f -> Proper (E.eq==>Logic.eq) g ->
forall s, sum (fun x =>f x+g x) s = sum f s + sum g s.
Proof.
unfold sum.
intros f g Hf Hg.
assert (fc : compat_opL (fun x:elt =>plus (f x))). red; auto.
assert (ft : transposeL (fun x:elt =>plus (f x))). red; intros; omega.
assert (gc : compat_opL (fun x:elt => plus (g x))). red; auto.
assert (gt : transposeL (fun x:elt =>plus (g x))). red; intros; omega.
assert (fgc : compat_opL (fun x:elt =>plus ((f x)+(g x)))). repeat red; auto.
assert (fgt : transposeL (fun x:elt=>plus ((f x)+(g x)))). red; intros; omega.
assert (st : Equivalence (@Logic.eq nat)) by (split; congruence).
intros s;pattern s; apply set_rec.
intros.
rewrite <- (fold_equal _ _ st _ fc ft 0 _ _ H).
rewrite <- (fold_equal _ _ st _ gc gt 0 _ _ H).
rewrite <- (fold_equal _ _ st _ fgc fgt 0 _ _ H); auto.
intros; do 3 (rewrite (fold_add _ _ st);auto).
rewrite H0;simpl;omega.
do 3 rewrite fold_empty;auto.
Qed.
Lemma sum_filter : forall f, (compat_bool E.eq f) ->
forall s, (sum (fun x => if f x then 1 else 0) s) = (cardinal (filter f s)).
Proof.
unfold sum; intros f Hf.
assert (st : Equivalence (@Logic.eq nat)) by (split; congruence).
assert (cc : compat_opL (fun x => plus (if f x then 1 else 0))).
repeat red; intros.
rewrite (Hf _ _ H); auto.
assert (ct : transposeL (fun x => plus (if f x then 1 else 0))).
red; intros; omega.
intros s;pattern s; apply set_rec.
intros.
change elt with E.t.
rewrite <- (fold_equal _ _ st _ cc ct 0 _ _ H).
rewrite <- (MP.Equal_cardinal (filter_equal Hf (equal_2 H))); auto.
intros; rewrite (fold_add _ _ st _ cc ct); auto.
generalize (@add_filter_1 f Hf s0 (add x s0) x) (@add_filter_2 f Hf s0 (add x s0) x) .
assert (~ In x (filter f s0)).
intro H1; rewrite (mem_1 (filter_1 Hf H1)) in H; discriminate H.
case (f x); simpl; intros.
rewrite (MP.cardinal_2 H1 (H2 Logic.eq_refl (MP.Add_add s0 x))); auto.
rewrite <- (MP.Equal_cardinal (H3 Logic.eq_refl (MP.Add_add s0 x))); auto.
intros; rewrite fold_empty;auto.
rewrite MP.cardinal_1; auto.
unfold Empty; intros.
rewrite filter_iff; auto; set_iff; tauto.
Qed.
Lemma fold_compat :
forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
(f g:elt->A->A),
(compat_op E.eq eqA f) -> (transpose eqA f) ->
(compat_op E.eq eqA g) -> (transpose eqA g) ->
forall (i:A)(s:t),(forall x:elt, (In x s) -> forall y, (eqA (f x y) (g x y))) ->
(eqA (fold f s i) (fold g s i)).
Proof.
intros A eqA st f g fc ft gc gt i.
intro s; pattern s; apply set_rec; intros.
transitivity (fold f s0 i).
apply fold_equal with (eqA:=eqA); auto.
rewrite equal_sym; auto.
transitivity (fold g s0 i).
apply H0; intros; apply H1; auto with set.
elim (equal_2 H x); auto with set; intros.
apply fold_equal with (eqA:=eqA); auto with set.
transitivity (f x (fold f s0 i)).
apply fold_add with (eqA:=eqA); auto with set.
transitivity (g x (fold f s0 i)); auto with set.
transitivity (g x (fold g s0 i)); auto with set.
apply gc; auto with *.
symmetry; apply fold_add with (eqA:=eqA); auto.
do 2 rewrite fold_empty; reflexivity.
Qed.
Lemma sum_compat :
forall f g, Proper (E.eq==>Logic.eq) f -> Proper (E.eq==>Logic.eq) g ->
forall s, (forall x, In x s -> f x=g x) -> sum f s=sum g s.
intros.
unfold sum; apply (fold_compat _ (@Logic.eq nat)); auto with *.
intros x x' Hx y y' Hy. rewrite Hx, Hy; auto.
intros x x' Hx y y' Hy. rewrite Hx, Hy; auto.
Qed.
End Sum.
End WEqProperties_fun.
(** Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping [WS<=S], the [EqProperties] functor which is meant to be
used on modules [(M:S)] can simply be an alias of [WEqProperties]. *)
Module WEqProperties (M:WS) := WEqProperties_fun M.E M.
Module EqProperties := WEqProperties.
|