1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(**************************************************************)
(* FSetDecide.v *)
(* *)
(* Author: Aaron Bohannon *)
(**************************************************************)
(** This file implements a decision procedure for a certain
class of propositions involving finite sets. *)
Require Import Decidable Setoid DecidableTypeEx FSetFacts.
(** First, a version for Weak Sets in functorial presentation *)
Module WDecide_fun (E : DecidableType)(Import M : WSfun E).
Module F := FSetFacts.WFacts_fun E M.
(** * Overview
This functor defines the tactic [fsetdec], which will
solve any valid goal of the form
<<
forall s1 ... sn,
forall x1 ... xm,
P1 -> ... -> Pk -> P
>>
where [P]'s are defined by the grammar:
<<
P ::=
| Q
| Empty F
| Subset F F'
| Equal F F'
Q ::=
| E.eq X X'
| In X F
| Q /\ Q'
| Q \/ Q'
| Q -> Q'
| Q <-> Q'
| ~ Q
| True
| False
F ::=
| S
| empty
| singleton X
| add X F
| remove X F
| union F F'
| inter F F'
| diff F F'
X ::= x1 | ... | xm
S ::= s1 | ... | sn
>>
The tactic will also work on some goals that vary slightly from
the above form:
- The variables and hypotheses may be mixed in any order and may
have already been introduced into the context. Moreover,
there may be additional, unrelated hypotheses mixed in (these
will be ignored).
- A conjunction of hypotheses will be handled as easily as
separate hypotheses, i.e., [P1 /\ P2 -> P] can be solved iff
[P1 -> P2 -> P] can be solved.
- [fsetdec] should solve any goal if the FSet-related hypotheses
are contradictory.
- [fsetdec] will first perform any necessary zeta and beta
reductions and will invoke [subst] to eliminate any Coq
equalities between finite sets or their elements.
- If [E.eq] is convertible with Coq's equality, it will not
matter which one is used in the hypotheses or conclusion.
- The tactic can solve goals where the finite sets or set
elements are expressed by Coq terms that are more complicated
than variables. However, non-local definitions are not
expanded, and Coq equalities between non-variable terms are
not used. For example, this goal will be solved:
<<
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g (g x2)) ->
In x1 s1 ->
In (g (g x2)) (f s2)
>>
This one will not be solved:
<<
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g x2) ->
In x1 s1 ->
g x2 = g (g x2) ->
In (g (g x2)) (f s2)
>>
*)
(** * Facts and Tactics for Propositional Logic
These lemmas and tactics are in a module so that they do
not affect the namespace if you import the enclosing
module [Decide]. *)
Module FSetLogicalFacts.
Export Decidable.
Export Setoid.
(** ** Lemmas and Tactics About Decidable Propositions *)
(** ** Propositional Equivalences Involving Negation
These are all written with the unfolded form of
negation, since I am not sure if setoid rewriting will
always perform conversion. *)
(** ** Tactics for Negations *)
Tactic Notation "fold" "any" "not" :=
repeat (
match goal with
| H: context [?P -> False] |- _ =>
fold (~ P) in H
| |- context [?P -> False] =>
fold (~ P)
end).
(** [push not using db] will pushes all negations to the
leaves of propositions in the goal, using the lemmas in
[db] to assist in checking the decidability of the
propositions involved. If [using db] is omitted, then
[core] will be used. Additional versions are provided
to manipulate the hypotheses or the hypotheses and goal
together.
XXX: This tactic and the similar subsequent ones should
have been defined using [autorewrite]. However, dealing
with multiples rewrite sites and side-conditions is
done more cleverly with the following explicit
analysis of goals. *)
Ltac or_not_l_iff P Q tac :=
(rewrite (or_not_l_iff_1 P Q) by tac) ||
(rewrite (or_not_l_iff_2 P Q) by tac).
Ltac or_not_r_iff P Q tac :=
(rewrite (or_not_r_iff_1 P Q) by tac) ||
(rewrite (or_not_r_iff_2 P Q) by tac).
Ltac or_not_l_iff_in P Q H tac :=
(rewrite (or_not_l_iff_1 P Q) in H by tac) ||
(rewrite (or_not_l_iff_2 P Q) in H by tac).
Ltac or_not_r_iff_in P Q H tac :=
(rewrite (or_not_r_iff_1 P Q) in H by tac) ||
(rewrite (or_not_r_iff_2 P Q) in H by tac).
Tactic Notation "push" "not" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff;
repeat (
match goal with
| |- context [True -> False] => rewrite not_true_iff
| |- context [False -> False] => rewrite not_false_iff
| |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
| |- context [(?P -> False) -> (?Q -> False)] =>
rewrite (contrapositive P Q) by dec
| |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
| |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
| |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
| |- context [?P \/ ?Q -> False] => rewrite (not_or_iff P Q)
| |- context [?P /\ ?Q -> False] => rewrite (not_and_iff P Q)
| |- context [(?P -> ?Q) -> False] => rewrite (not_imp_iff P Q) by dec
end);
fold any not.
Tactic Notation "push" "not" :=
push not using core.
Tactic Notation
"push" "not" "in" "*" "|-" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff in * |-;
repeat (
match goal with
| H: context [True -> False] |- _ => rewrite not_true_iff in H
| H: context [False -> False] |- _ => rewrite not_false_iff in H
| H: context [(?P -> False) -> False] |- _ =>
rewrite (not_not_iff P) in H by dec
| H: context [(?P -> False) -> (?Q -> False)] |- _ =>
rewrite (contrapositive P Q) in H by dec
| H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
| H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
| H: context [(?P -> False) -> ?Q] |- _ =>
rewrite (imp_not_l P Q) in H by dec
| H: context [?P \/ ?Q -> False] |- _ => rewrite (not_or_iff P Q) in H
| H: context [?P /\ ?Q -> False] |- _ => rewrite (not_and_iff P Q) in H
| H: context [(?P -> ?Q) -> False] |- _ =>
rewrite (not_imp_iff P Q) in H by dec
end);
fold any not.
Tactic Notation "push" "not" "in" "*" "|-" :=
push not in * |- using core.
Tactic Notation "push" "not" "in" "*" "using" ident(db) :=
push not using db; push not in * |- using db.
Tactic Notation "push" "not" "in" "*" :=
push not in * using core.
(** A simple test case to see how this works. *)
Lemma test_push : forall P Q R : Prop,
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ ((R -> P) \/ (Q -> R))) ->
(~ (P /\ R)) ->
(~ (P -> R)) ->
True.
Proof.
intros. push not in *.
(* note that ~(R->P) remains (since R isnt decidable) *)
tauto.
Qed.
(** [pull not using db] will pull as many negations as
possible toward the top of the propositions in the goal,
using the lemmas in [db] to assist in checking the
decidability of the propositions involved. If [using
db] is omitted, then [core] will be used. Additional
versions are provided to manipulate the hypotheses or
the hypotheses and goal together. *)
Tactic Notation "pull" "not" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff;
repeat (
match goal with
| |- context [True -> False] => rewrite not_true_iff
| |- context [False -> False] => rewrite not_false_iff
| |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
| |- context [(?P -> False) -> (?Q -> False)] =>
rewrite (contrapositive P Q) by dec
| |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
| |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
| |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
| |- context [(?P -> False) /\ (?Q -> False)] =>
rewrite <- (not_or_iff P Q)
| |- context [?P -> ?Q -> False] => rewrite <- (not_and_iff P Q)
| |- context [?P /\ (?Q -> False)] => rewrite <- (not_imp_iff P Q) by dec
| |- context [(?Q -> False) /\ ?P] =>
rewrite <- (not_imp_rev_iff P Q) by dec
end);
fold any not.
Tactic Notation "pull" "not" :=
pull not using core.
Tactic Notation
"pull" "not" "in" "*" "|-" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff in * |-;
repeat (
match goal with
| H: context [True -> False] |- _ => rewrite not_true_iff in H
| H: context [False -> False] |- _ => rewrite not_false_iff in H
| H: context [(?P -> False) -> False] |- _ =>
rewrite (not_not_iff P) in H by dec
| H: context [(?P -> False) -> (?Q -> False)] |- _ =>
rewrite (contrapositive P Q) in H by dec
| H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
| H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
| H: context [(?P -> False) -> ?Q] |- _ =>
rewrite (imp_not_l P Q) in H by dec
| H: context [(?P -> False) /\ (?Q -> False)] |- _ =>
rewrite <- (not_or_iff P Q) in H
| H: context [?P -> ?Q -> False] |- _ =>
rewrite <- (not_and_iff P Q) in H
| H: context [?P /\ (?Q -> False)] |- _ =>
rewrite <- (not_imp_iff P Q) in H by dec
| H: context [(?Q -> False) /\ ?P] |- _ =>
rewrite <- (not_imp_rev_iff P Q) in H by dec
end);
fold any not.
Tactic Notation "pull" "not" "in" "*" "|-" :=
pull not in * |- using core.
Tactic Notation "pull" "not" "in" "*" "using" ident(db) :=
pull not using db; pull not in * |- using db.
Tactic Notation "pull" "not" "in" "*" :=
pull not in * using core.
(** A simple test case to see how this works. *)
Lemma test_pull : forall P Q R : Prop,
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ (R -> P) /\ ~ (Q -> R)) ->
(~ P \/ ~ R) ->
(P /\ ~ R) ->
(~ R /\ P) ->
True.
Proof.
intros. pull not in *. tauto.
Qed.
End FSetLogicalFacts.
Import FSetLogicalFacts.
(** * Auxiliary Tactics
Again, these lemmas and tactics are in a module so that
they do not affect the namespace if you import the
enclosing module [Decide]. *)
Module FSetDecideAuxiliary.
(** ** Generic Tactics
We begin by defining a few generic, useful tactics. *)
(** remove logical hypothesis inter-dependencies (fix #2136). *)
Ltac no_logical_interdep :=
match goal with
| H : ?P |- _ =>
match type of P with
| Prop =>
match goal with H' : context [ H ] |- _ => clear dependent H' end
| _ => fail
end; no_logical_interdep
| _ => idtac
end.
Ltac abstract_term t :=
tryif (is_var t) then fail "no need to abstract a variable"
else (let x := fresh "x" in set (x := t) in *; try clearbody x).
Ltac abstract_elements :=
repeat
(match goal with
| |- context [ singleton ?t ] => abstract_term t
| _ : context [ singleton ?t ] |- _ => abstract_term t
| |- context [ add ?t _ ] => abstract_term t
| _ : context [ add ?t _ ] |- _ => abstract_term t
| |- context [ remove ?t _ ] => abstract_term t
| _ : context [ remove ?t _ ] |- _ => abstract_term t
| |- context [ In ?t _ ] => abstract_term t
| _ : context [ In ?t _ ] |- _ => abstract_term t
end).
(** [prop P holds by t] succeeds (but does not modify the
goal or context) if the proposition [P] can be proved by
[t] in the current context. Otherwise, the tactic
fails. *)
Tactic Notation "prop" constr(P) "holds" "by" tactic(t) :=
let H := fresh in
assert P as H by t;
clear H.
(** This tactic acts just like [assert ... by ...] but will
fail if the context already contains the proposition. *)
Tactic Notation "assert" "new" constr(e) "by" tactic(t) :=
match goal with
| H: e |- _ => fail 1
| _ => assert e by t
end.
(** [subst++] is similar to [subst] except that
- it never fails (as [subst] does on recursive
equations),
- it substitutes locally defined variable for their
definitions,
- it performs beta reductions everywhere, which may
arise after substituting a locally defined function
for its definition.
*)
Tactic Notation "subst" "++" :=
repeat (
match goal with
| x : _ |- _ => subst x
end);
cbv zeta beta in *.
(** [decompose records] calls [decompose record H] on every
relevant hypothesis [H]. *)
Tactic Notation "decompose" "records" :=
repeat (
match goal with
| H: _ |- _ => progress (decompose record H); clear H
end).
(** ** Discarding Irrelevant Hypotheses
We will want to clear the context of any
non-FSet-related hypotheses in order to increase the
speed of the tactic. To do this, we will need to be
able to decide which are relevant. We do this by making
a simple inductive definition classifying the
propositions of interest. *)
Inductive FSet_elt_Prop : Prop -> Prop :=
| eq_Prop : forall (S : Type) (x y : S),
FSet_elt_Prop (x = y)
| eq_elt_prop : forall x y,
FSet_elt_Prop (E.eq x y)
| In_elt_prop : forall x s,
FSet_elt_Prop (In x s)
| True_elt_prop :
FSet_elt_Prop True
| False_elt_prop :
FSet_elt_Prop False
| conj_elt_prop : forall P Q,
FSet_elt_Prop P ->
FSet_elt_Prop Q ->
FSet_elt_Prop (P /\ Q)
| disj_elt_prop : forall P Q,
FSet_elt_Prop P ->
FSet_elt_Prop Q ->
FSet_elt_Prop (P \/ Q)
| impl_elt_prop : forall P Q,
FSet_elt_Prop P ->
FSet_elt_Prop Q ->
FSet_elt_Prop (P -> Q)
| not_elt_prop : forall P,
FSet_elt_Prop P ->
FSet_elt_Prop (~ P).
Inductive FSet_Prop : Prop -> Prop :=
| elt_FSet_Prop : forall P,
FSet_elt_Prop P ->
FSet_Prop P
| Empty_FSet_Prop : forall s,
FSet_Prop (Empty s)
| Subset_FSet_Prop : forall s1 s2,
FSet_Prop (Subset s1 s2)
| Equal_FSet_Prop : forall s1 s2,
FSet_Prop (Equal s1 s2).
(** Here is the tactic that will throw away hypotheses that
are not useful (for the intended scope of the [fsetdec]
tactic). *)
Hint Constructors FSet_elt_Prop FSet_Prop : FSet_Prop.
Ltac discard_nonFSet :=
repeat (
match goal with
| H : context [ @Logic.eq ?T ?x ?y ] |- _ =>
tryif (change T with E.t in H) then fail
else tryif (change T with t in H) then fail
else clear H
| H : ?P |- _ =>
tryif prop (FSet_Prop P) holds by
(auto 100 with FSet_Prop)
then fail
else clear H
end).
(** ** Turning Set Operators into Propositional Connectives
The lemmas from [FSetFacts] will be used to break down
set operations into propositional formulas built over
the predicates [In] and [E.eq] applied only to
variables. We are going to use them with [autorewrite].
*)
Hint Rewrite
F.empty_iff F.singleton_iff F.add_iff F.remove_iff
F.union_iff F.inter_iff F.diff_iff
: set_simpl.
Lemma eq_refl_iff (x : E.t) : E.eq x x <-> True.
Proof.
now split.
Qed.
Hint Rewrite eq_refl_iff : set_eq_simpl.
(** ** Decidability of FSet Propositions *)
(** [In] is decidable. *)
Lemma dec_In : forall x s,
decidable (In x s).
Proof.
red; intros; generalize (F.mem_iff s x); case (mem x s); intuition.
Qed.
(** [E.eq] is decidable. *)
Lemma dec_eq : forall (x y : E.t),
decidable (E.eq x y).
Proof.
red; intros x y; destruct (E.eq_dec x y); auto.
Qed.
(** The hint database [FSet_decidability] will be given to
the [push_neg] tactic from the module [Negation]. *)
Hint Resolve dec_In dec_eq : FSet_decidability.
(** ** Normalizing Propositions About Equality
We have to deal with the fact that [E.eq] may be
convertible with Coq's equality. Thus, we will find the
following tactics useful to replace one form with the
other everywhere. *)
(** The next tactic, [Logic_eq_to_E_eq], mentions the term
[E.t]; thus, we must ensure that [E.t] is used in favor
of any other convertible but syntactically distinct
term. *)
Ltac change_to_E_t :=
repeat (
match goal with
| H : ?T |- _ =>
progress (change T with E.t in H);
repeat (
match goal with
| J : _ |- _ => progress (change T with E.t in J)
| |- _ => progress (change T with E.t)
end )
| H : forall x : ?T, _ |- _ =>
progress (change T with E.t in H);
repeat (
match goal with
| J : _ |- _ => progress (change T with E.t in J)
| |- _ => progress (change T with E.t)
end )
end).
(** These two tactics take us from Coq's built-in equality
to [E.eq] (and vice versa) when possible. *)
Ltac Logic_eq_to_E_eq :=
repeat (
match goal with
| H: _ |- _ =>
progress (change (@Logic.eq E.t) with E.eq in H)
| |- _ =>
progress (change (@Logic.eq E.t) with E.eq)
end).
Ltac E_eq_to_Logic_eq :=
repeat (
match goal with
| H: _ |- _ =>
progress (change E.eq with (@Logic.eq E.t) in H)
| |- _ =>
progress (change E.eq with (@Logic.eq E.t))
end).
(** This tactic works like the built-in tactic [subst], but
at the level of set element equality (which may not be
the convertible with Coq's equality). *)
Ltac substFSet :=
repeat (
match goal with
| H: E.eq ?x ?x |- _ => clear H
| H: E.eq ?x ?y |- _ => rewrite H in *; clear H
end);
autorewrite with set_eq_simpl in *.
(** ** Considering Decidability of Base Propositions
This tactic adds assertions about the decidability of
[E.eq] and [In] to the context. This is necessary for
the completeness of the [fsetdec] tactic. However, in
order to minimize the cost of proof search, we should be
careful to not add more than we need. Once negations
have been pushed to the leaves of the propositions, we
only need to worry about decidability for those base
propositions that appear in a negated form. *)
Ltac assert_decidability :=
(** We actually don't want these rules to fire if the
syntactic context in the patterns below is trivially
empty, but we'll just do some clean-up at the
afterward. *)
repeat (
match goal with
| H: context [~ E.eq ?x ?y] |- _ =>
assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
| H: context [~ In ?x ?s] |- _ =>
assert new (In x s \/ ~ In x s) by (apply dec_In)
| |- context [~ E.eq ?x ?y] =>
assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
| |- context [~ In ?x ?s] =>
assert new (In x s \/ ~ In x s) by (apply dec_In)
end);
(** Now we eliminate the useless facts we added (because
they would likely be very harmful to performance). *)
repeat (
match goal with
| _: ~ ?P, H : ?P \/ ~ ?P |- _ => clear H
end).
(** ** Handling [Empty], [Subset], and [Equal]
This tactic instantiates universally quantified
hypotheses (which arise from the unfolding of [Empty],
[Subset], and [Equal]) for each of the set element
expressions that is involved in some membership or
equality fact. Then it throws away those hypotheses,
which should no longer be needed. *)
Ltac inst_FSet_hypotheses :=
repeat (
match goal with
| H : forall a : E.t, _,
_ : context [ In ?x _ ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ In ?x _ ] =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _,
_ : context [ E.eq ?x _ ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ E.eq ?x _ ] =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _,
_ : context [ E.eq _ ?x ] |- _ =>
let P := type of (H x) in
assert new P by (exact (H x))
| H : forall a : E.t, _
|- context [ E.eq _ ?x ] =>
let P := type of (H x) in
assert new P by (exact (H x))
end);
repeat (
match goal with
| H : forall a : E.t, _ |- _ =>
clear H
end).
(** ** The Core [fsetdec] Auxiliary Tactics *)
(** Here is the crux of the proof search. Recursion through
[intuition]! (This will terminate if I correctly
understand the behavior of [intuition].) *)
Ltac fsetdec_rec := progress substFSet; intuition fsetdec_rec.
(** If we add [unfold Empty, Subset, Equal in *; intros;] to
the beginning of this tactic, it will satisfy the same
specification as the [fsetdec] tactic; however, it will
be much slower than necessary without the pre-processing
done by the wrapper tactic [fsetdec]. *)
Ltac fsetdec_body :=
autorewrite with set_eq_simpl in *;
inst_FSet_hypotheses;
autorewrite with set_simpl set_eq_simpl in *;
push not in * using FSet_decidability;
substFSet;
assert_decidability;
auto;
(intuition fsetdec_rec) ||
fail 1
"because the goal is beyond the scope of this tactic".
End FSetDecideAuxiliary.
Import FSetDecideAuxiliary.
(** * The [fsetdec] Tactic
Here is the top-level tactic (the only one intended for
clients of this library). It's specification is given at
the top of the file. *)
Ltac fsetdec :=
(** We first unfold any occurrences of [iff]. *)
unfold iff in *;
(** We fold occurrences of [not] because it is better for
[intros] to leave us with a goal of [~ P] than a goal of
[False]. *)
fold any not; intros;
(** We don't care about the value of elements : complex ones are
abstracted as new variables (avoiding potential dependencies,
see bug #2464) *)
abstract_elements;
(** We remove dependencies to logical hypothesis. This way,
later "clear" will work nicely (see bug #2136) *)
no_logical_interdep;
(** Now we decompose conjunctions, which will allow the
[discard_nonFSet] and [assert_decidability] tactics to
do a much better job. *)
decompose records;
discard_nonFSet;
(** We unfold these defined propositions on finite sets. If
our goal was one of them, then have one more item to
introduce now. *)
unfold Empty, Subset, Equal in *; intros;
(** We now want to get rid of all uses of [=] in favor of
[E.eq]. However, the best way to eliminate a [=] is in
the context is with [subst], so we will try that first.
In fact, we may as well convert uses of [E.eq] into [=]
when possible before we do [subst] so that we can even
more mileage out of it. Then we will convert all
remaining uses of [=] back to [E.eq] when possible. We
use [change_to_E_t] to ensure that we have a canonical
name for set elements, so that [Logic_eq_to_E_eq] will
work properly. *)
change_to_E_t; E_eq_to_Logic_eq; subst++; Logic_eq_to_E_eq;
(** The next optimization is to swap a negated goal with a
negated hypothesis when possible. Any swap will improve
performance by eliminating the total number of
negations, but we will get the maximum benefit if we
swap the goal with a hypotheses mentioning the same set
element, so we try that first. If we reach the fourth
branch below, we attempt any swap. However, to maintain
completeness of this tactic, we can only perform such a
swap with a decidable proposition; hence, we first test
whether the hypothesis is an [FSet_elt_Prop], noting
that any [FSet_elt_Prop] is decidable. *)
pull not using FSet_decidability;
unfold not in *;
match goal with
| H: (In ?x ?r) -> False |- (In ?x ?s) -> False =>
contradict H; fsetdec_body
| H: (In ?x ?r) -> False |- (E.eq ?x ?y) -> False =>
contradict H; fsetdec_body
| H: (In ?x ?r) -> False |- (E.eq ?y ?x) -> False =>
contradict H; fsetdec_body
| H: ?P -> False |- ?Q -> False =>
tryif prop (FSet_elt_Prop P) holds by
(auto 100 with FSet_Prop)
then (contradict H; fsetdec_body)
else fsetdec_body
| |- _ =>
fsetdec_body
end.
(** * Examples *)
Module FSetDecideTestCases.
Lemma test_eq_trans_1 : forall x y z s,
E.eq x y ->
~ ~ E.eq z y ->
In x s ->
In z s.
Proof. fsetdec. Qed.
Lemma test_eq_trans_2 : forall x y z r s,
In x (singleton y) ->
~ In z r ->
~ ~ In z (add y r) ->
In x s ->
In z s.
Proof. fsetdec. Qed.
Lemma test_eq_neq_trans_1 : forall w x y z s,
E.eq x w ->
~ ~ E.eq x y ->
~ E.eq y z ->
In w s ->
In w (remove z s).
Proof. fsetdec. Qed.
Lemma test_eq_neq_trans_2 : forall w x y z r1 r2 s,
In x (singleton w) ->
~ In x r1 ->
In x (add y r1) ->
In y r2 ->
In y (remove z r2) ->
In w s ->
In w (remove z s).
Proof. fsetdec. Qed.
Lemma test_In_singleton : forall x,
In x (singleton x).
Proof. fsetdec. Qed.
Lemma test_add_In : forall x y s,
In x (add y s) ->
~ E.eq x y ->
In x s.
Proof. fsetdec. Qed.
Lemma test_Subset_add_remove : forall x s,
s [<=] (add x (remove x s)).
Proof. fsetdec. Qed.
Lemma test_eq_disjunction : forall w x y z,
In w (add x (add y (singleton z))) ->
E.eq w x \/ E.eq w y \/ E.eq w z.
Proof. fsetdec. Qed.
Lemma test_not_In_disj : forall x y s1 s2 s3 s4,
~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
~ (In x s1 \/ In x s4 \/ E.eq y x).
Proof. fsetdec. Qed.
Lemma test_not_In_conj : forall x y s1 s2 s3 s4,
~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
~ In x s1 /\ ~ In x s4 /\ ~ E.eq y x.
Proof. fsetdec. Qed.
Lemma test_iff_conj : forall a x s s',
(In a s' <-> E.eq x a \/ In a s) ->
(In a s' <-> In a (add x s)).
Proof. fsetdec. Qed.
Lemma test_set_ops_1 : forall x q r s,
(singleton x) [<=] s ->
Empty (union q r) ->
Empty (inter (diff s q) (diff s r)) ->
~ In x s.
Proof. fsetdec. Qed.
Lemma eq_chain_test : forall x1 x2 x3 x4 s1 s2 s3 s4,
Empty s1 ->
In x2 (add x1 s1) ->
In x3 s2 ->
~ In x3 (remove x2 s2) ->
~ In x4 s3 ->
In x4 (add x3 s3) ->
In x1 s4 ->
Subset (add x4 s4) s4.
Proof. fsetdec. Qed.
Lemma test_too_complex : forall x y z r s,
E.eq x y ->
(In x (singleton y) -> r [<=] s) ->
In z r ->
In z s.
Proof.
(** [fsetdec] is not intended to solve this directly. *)
intros until s; intros Heq H Hr; lapply H; fsetdec.
Qed.
Lemma function_test_1 :
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g (g x2)) ->
In x1 s1 ->
In (g (g x2)) (f s2).
Proof. fsetdec. Qed.
Lemma function_test_2 :
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g x2) ->
In x1 s1 ->
g x2 = g (g x2) ->
In (g (g x2)) (f s2).
Proof.
(** [fsetdec] is not intended to solve this directly. *)
intros until 3. intros g_eq. rewrite <- g_eq. fsetdec.
Qed.
Lemma test_baydemir :
forall (f : t -> t),
forall (s : t),
forall (x y : elt),
In x (add y (f s)) ->
~ E.eq x y ->
In x (f s).
Proof.
fsetdec.
Qed.
End FSetDecideTestCases.
End WDecide_fun.
Require Import FSetInterface.
(** Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping [WS<=S], the [Decide] functor which is meant to be
used on modules [(M:S)] can simply be an alias of [WDecide]. *)
Module WDecide (M:WS) := !WDecide_fun M.E M.
Module Decide := WDecide.
|