aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FMapInterface.v
blob: 4d89b562d69347d78a1123b472a6dca38a0c57da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(** * Finite map library *)

(** This file proposes interfaces for finite maps *)

Require Export Bool DecidableType OrderedType.
Set Implicit Arguments.
Unset Strict Implicit.

(** When compared with Ocaml Map, this signature has been split in
    several parts :

   - The first parts [WSfun] and [WS] propose signatures for weak
     maps, which are maps with no ordering on the key type nor the
     data type.  [WSfun] and [WS] are almost identical, apart from the
     fact that [WSfun] is expressed in a functorial way whereas [WS]
     is self-contained. For obtaining an instance of such signatures,
     a decidable equality on keys in enough (see for example
     [FMapWeakList]). These signatures contain the usual operators
     (add, find, ...). The only function that asks for more is
     [equal], whose first argument should be a comparison on data.

   - Then comes [Sfun] and [S], that extend [WSfun] and [WS] to the
     case where the key type is ordered. The main novelty is that
     [elements] is required to produce sorted lists.

   - Finally, [Sord] extends [S] with a complete comparison function. For
     that, the data type should have a decidable total ordering as well.

   If unsure, what you're looking for is probably [S]: apart from [Sord],
   all other signatures are subsets of [S].

   Some additional differences with Ocaml:

    - no [iter] function, useless since Coq is purely functional
    - [option] types are used instead of [Not_found] exceptions
    - more functions are provided: [elements] and [cardinal] and [map2]

*)


Definition Cmp (elt:Type)(cmp:elt->elt->bool) e1 e2 := cmp e1 e2 = true.

(** ** Weak signature for maps

    No requirements for an ordering on keys nor elements, only decidability
    of equality on keys. First, a functorial signature: *)

Module Type WSfun (E : DecidableType).

  Definition key := E.t.
  Hint Transparent key.

  Parameter t : Type -> Type.
  (** the abstract type of maps *)

  Section Types.

    Variable elt:Type.

    Parameter empty : t elt.
    (** The empty map. *)

    Parameter is_empty : t elt -> bool.
    (** Test whether a map is empty or not. *)

    Parameter add : key -> elt -> t elt -> t elt.
    (** [add x y m] returns a map containing the same bindings as [m],
	plus a binding of [x] to [y]. If [x] was already bound in [m],
	its previous binding disappears. *)

    Parameter find : key -> t elt -> option elt.
    (** [find x m] returns the current binding of [x] in [m],
	or [None] if no such binding exists. *)

    Parameter remove : key -> t elt -> t elt.
    (** [remove x m] returns a map containing the same bindings as [m],
	except for [x] which is unbound in the returned map. *)

    Parameter mem : key -> t elt -> bool.
    (** [mem x m] returns [true] if [m] contains a binding for [x],
	and [false] otherwise. *)

    Variable elt' elt'' : Type.

    Parameter map : (elt -> elt') -> t elt -> t elt'.
    (** [map f m] returns a map with same domain as [m], where the associated
	value a of all bindings of [m] has been replaced by the result of the
	application of [f] to [a]. Since Coq is purely functional, the order
        in which the bindings are passed to [f] is irrelevant. *)

    Parameter mapi : (key -> elt -> elt') -> t elt -> t elt'.
    (** Same as [map], but the function receives as arguments both the
	key and the associated value for each binding of the map. *)

    Parameter map2 :
     (option elt -> option elt' -> option elt'') -> t elt -> t elt' ->  t elt''.
    (** [map2 f m m'] creates a new map whose bindings belong to the ones
        of either [m] or [m']. The presence and value for a key [k] is
        determined by [f e e'] where [e] and [e'] are the (optional) bindings
        of [k] in [m] and [m']. *)

    Parameter elements : t elt -> list (key*elt).
    (** [elements m] returns an assoc list corresponding to the bindings
        of [m], in any order. *)

    Parameter cardinal : t elt -> nat.
    (** [cardinal m] returns the number of bindings in [m]. *)

    Parameter fold : forall A: Type, (key -> elt -> A -> A) -> t elt -> A -> A.
    (** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
	where [k1] ... [kN] are the keys of all bindings in [m]
	(in any order), and [d1] ... [dN] are the associated data. *)

    Parameter equal : (elt -> elt -> bool) -> t elt -> t elt -> bool.
    (** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are equal,
      that is, contain equal keys and associate them with equal data.
      [cmp] is the equality predicate used to compare the data associated
      with the keys. *)

    Section Spec.

      Variable m m' m'' : t elt.
      Variable x y z : key.
      Variable e e' : elt.

      Parameter MapsTo : key -> elt -> t elt -> Prop.

      Definition In (k:key)(m: t elt) : Prop := exists e:elt, MapsTo k e m.

      Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m.

      Definition eq_key (p p':key*elt) := E.eq (fst p) (fst p').

      Definition eq_key_elt (p p':key*elt) :=
          E.eq (fst p) (fst p') /\ (snd p) = (snd p').

    (** Specification of [MapsTo] *)
      Parameter MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m.

    (** Specification of [mem] *)
      Parameter mem_1 : In x m -> mem x m = true.
      Parameter mem_2 : mem x m = true -> In x m.

    (** Specification of [empty] *)
      Parameter empty_1 : Empty empty.

    (** Specification of [is_empty] *)
      Parameter is_empty_1 : Empty m -> is_empty m = true.
      Parameter is_empty_2 : is_empty m = true -> Empty m.

    (** Specification of [add] *)
      Parameter add_1 : E.eq x y -> MapsTo y e (add x e m).
      Parameter add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
      Parameter add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.

    (** Specification of [remove] *)
      Parameter remove_1 : E.eq x y -> ~ In y (remove x m).
      Parameter remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
      Parameter remove_3 : MapsTo y e (remove x m) -> MapsTo y e m.

    (** Specification of [find] *)
      Parameter find_1 : MapsTo x e m -> find x m = Some e.
      Parameter find_2 : find x m = Some e -> MapsTo x e m.

    (** Specification of [elements] *)
      Parameter elements_1 :
        MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
      Parameter elements_2 :
        InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
      (** When compared with ordered maps, here comes the only
         property that is really weaker: *)
      Parameter elements_3w : NoDupA eq_key (elements m).

    (** Specification of [cardinal] *)
      Parameter cardinal_1 : cardinal m = length (elements m).

    (** Specification of [fold] *)
      Parameter fold_1 :
	forall (A : Type) (i : A) (f : key -> elt -> A -> A),
        fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.

    (** Equality of maps *)

    (** Caveat: there are at least three distinct equality predicates on maps.
      - The simpliest (and maybe most natural) way is to consider keys up to
        their equivalence [E.eq], but elements up to Leibniz equality, in
        the spirit of [eq_key_elt] above. This leads to predicate [Equal].
      - Unfortunately, this [Equal] predicate can't be used to describe
        the [equal] function, since this function (for compatibility with
        ocaml) expects a boolean comparison [cmp] that may identify more
        elements than Leibniz. So logical specification of [equal] is done
        via another predicate [Equivb]
      - This predicate [Equivb] is quite ad-hoc with its boolean [cmp],
        it can be generalized in a [Equiv] expecting a more general
        (possibly non-decidable) equality predicate on elements *)

     Definition Equal m m' := forall y, find y m = find y m'.
     Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
         (forall k, In k m <-> In k m') /\
         (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
     Definition Equivb (cmp: elt->elt->bool) := Equiv (Cmp cmp).

     (** Specification of [equal] *)

     Variable cmp : elt -> elt -> bool.

     Parameter equal_1 : Equivb cmp m m' -> equal cmp m m' = true.
     Parameter equal_2 : equal cmp m m' = true -> Equivb cmp m m'.

    End Spec.
   End Types.

    (** Specification of [map] *)
      Parameter map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
        MapsTo x e m -> MapsTo x (f e) (map f m).
      Parameter map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
        In x (map f m) -> In x m.

    (** Specification of [mapi] *)
      Parameter mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
        (f:key->elt->elt'), MapsTo x e m ->
        exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
      Parameter mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
        (f:key->elt->elt'), In x (mapi f m) -> In x m.

    (** Specification of [map2] *)
      Parameter map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
	(x:key)(f:option elt->option elt'->option elt''),
	In x m \/ In x m' ->
        find x (map2 f m m') = f (find x m) (find x m').

     Parameter map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
	(x:key)(f:option elt->option elt'->option elt''),
        In x (map2 f m m') -> In x m \/ In x m'.

  Hint Immediate MapsTo_1 mem_2 is_empty_2
    map_2 mapi_2 add_3 remove_3 find_2
    : map.
  Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 remove_1
    remove_2 find_1 fold_1 map_1 mapi_1 mapi_2
    : map.

End WSfun.


(** ** Static signature for Weak Maps

    Similar to [WSfun] but expressed in a self-contained way. *)

Module Type WS.
  Declare Module E : DecidableType.
  Include WSfun E.
End WS.



(** ** Maps on ordered keys, functorial signature *)

Module Type Sfun (E : OrderedType).
  Include WSfun E.
  Section elt.
  Variable elt:Type.
   Definition lt_key (p p':key*elt) := E.lt (fst p) (fst p').
   (* Additional specification of [elements] *)
   Parameter elements_3 : forall m, sort lt_key (elements m).
   (** Remark: since [fold] is specified via [elements], this stronger
   specification of [elements] has an indirect impact on [fold],
   which can now be proved to receive elements in increasing order. *)
  End elt.
End Sfun.



(** ** Maps on ordered keys, self-contained signature *)

Module Type S.
  Declare Module E : OrderedType.
  Include Sfun E.
End S.



(** ** Maps with ordering both on keys and datas *)

Module Type Sord.

  Declare Module Data : OrderedType.
  Declare Module MapS : S.
  Import MapS.

  Definition t := MapS.t Data.t.

  Parameter eq : t -> t -> Prop.
  Parameter lt : t -> t -> Prop.

  Axiom eq_refl : forall m : t, eq m m.
  Axiom eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
  Axiom eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
  Axiom lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
  Axiom lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.

  Definition cmp e e' := match Data.compare e e' with EQ _ => true | _ => false end.

  Parameter eq_1 : forall m m', Equivb cmp m m' -> eq m m'.
  Parameter eq_2 : forall m m', eq m m' -> Equivb cmp m m'.

  Parameter compare : forall m1 m2, Compare lt eq m1 m2.
  (** Total ordering between maps. [Data.compare] is a total ordering
      used to compare data associated with equal keys in the two maps. *)

End Sord.