1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
(** * Finite maps library *)
(** This functor derives additional facts from [FMapInterface.S]. These
facts are mainly the specifications of [FMapInterface.S] written using
different styles: equivalence and boolean equalities.
*)
Require Import Bool DecidableType DecidableTypeEx OrderedType.
Require Export FMapInterface.
Set Implicit Arguments.
Unset Strict Implicit.
(** * Facts about weak maps *)
Module WFacts (E:DecidableType)(Import M:WSfun E).
Notation eq_dec := E.eq_dec.
Definition eqb x y := if eq_dec x y then true else false.
Lemma MapsTo_fun : forall (elt:Set) m x (e e':elt),
MapsTo x e m -> MapsTo x e' m -> e=e'.
Proof.
intros.
generalize (find_1 H) (find_1 H0); clear H H0.
intros; rewrite H in H0; injection H0; auto.
Qed.
(** ** Specifications written using equivalences *)
Section IffSpec.
Variable elt elt' elt'': Set.
Implicit Type m: t elt.
Implicit Type x y z: key.
Implicit Type e: elt.
Lemma MapsTo_iff : forall m x y e, E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
Proof.
split; apply MapsTo_1; auto.
Qed.
Lemma In_iff : forall m x y, E.eq x y -> (In x m <-> In y m).
Proof.
unfold In.
split; intros (e0,H0); exists e0.
apply (MapsTo_1 H H0); auto.
apply (MapsTo_1 (E.eq_sym H) H0); auto.
Qed.
Lemma find_mapsto_iff : forall m x e, MapsTo x e m <-> find x m = Some e.
Proof.
split; [apply find_1|apply find_2].
Qed.
Lemma not_find_mapsto_iff : forall m x, ~In x m <-> find x m = None.
Proof.
intros.
generalize (find_mapsto_iff m x); destruct (find x m).
split; intros; try discriminate.
destruct H0.
exists e; rewrite H; auto.
split; auto.
intros; intros (e,H1).
rewrite H in H1; discriminate.
Qed.
Lemma mem_in_iff : forall m x, In x m <-> mem x m = true.
Proof.
split; [apply mem_1|apply mem_2].
Qed.
Lemma not_mem_in_iff : forall m x, ~In x m <-> mem x m = false.
Proof.
intros; rewrite mem_in_iff; destruct (mem x m); intuition.
Qed.
Lemma equal_iff : forall m m' cmp, Equal cmp m m' <-> equal cmp m m' = true.
Proof.
split; [apply equal_1|apply equal_2].
Qed.
Lemma empty_mapsto_iff : forall x e, MapsTo x e (empty elt) <-> False.
Proof.
intuition; apply (empty_1 H).
Qed.
Lemma empty_in_iff : forall x, In x (empty elt) <-> False.
Proof.
unfold In.
split; [intros (e,H); rewrite empty_mapsto_iff in H|]; intuition.
Qed.
Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true.
Proof.
split; [apply is_empty_1|apply is_empty_2].
Qed.
Lemma add_mapsto_iff : forall m x y e e',
MapsTo y e' (add x e m) <->
(E.eq x y /\ e=e') \/
(~E.eq x y /\ MapsTo y e' m).
Proof.
intros.
intuition.
destruct (eq_dec x y); [left|right].
split; auto.
symmetry; apply (MapsTo_fun (e':=e) H); auto with map.
split; auto; apply add_3 with x e; auto.
subst; auto with map.
Qed.
Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m.
Proof.
unfold In; split.
intros (e',H).
destruct (eq_dec x y) as [E|E]; auto.
right; exists e'; auto.
apply (add_3 E H).
destruct (eq_dec x y) as [E|E]; auto.
intros.
exists e; apply add_1; auto.
intros [H|(e',H)].
destruct E; auto.
exists e'; apply add_2; auto.
Qed.
Lemma add_neq_mapsto_iff : forall m x y e e',
~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.
Lemma add_neq_in_iff : forall m x y e,
~ E.eq x y -> (In y (add x e m) <-> In y m).
Proof.
split; intros (e',H0); exists e'.
apply (add_3 H H0).
apply add_2; auto.
Qed.
Lemma remove_mapsto_iff : forall m x y e,
MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m.
Proof.
intros.
split; intros.
split.
assert (In y (remove x m)) by (exists e; auto).
intro H1; apply (remove_1 H1 H0).
apply remove_3 with x; auto.
apply remove_2; intuition.
Qed.
Lemma remove_in_iff : forall m x y, In y (remove x m) <-> ~E.eq x y /\ In y m.
Proof.
unfold In; split.
intros (e,H).
split.
assert (In y (remove x m)) by (exists e; auto).
intro H1; apply (remove_1 H1 H0).
exists e; apply remove_3 with x; auto.
intros (H,(e,H0)); exists e; apply remove_2; auto.
Qed.
Lemma remove_neq_mapsto_iff : forall m x y e,
~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.
Lemma remove_neq_in_iff : forall m x y,
~ E.eq x y -> (In y (remove x m) <-> In y m).
Proof.
split; intros (e',H0); exists e'.
apply (remove_3 H0).
apply remove_2; auto.
Qed.
Lemma elements_mapsto_iff : forall m x e,
MapsTo x e m <-> InA (@eq_key_elt _) (x,e) (elements m).
Proof.
split; [apply elements_1 | apply elements_2].
Qed.
Lemma elements_in_iff : forall m x,
In x m <-> exists e, InA (@eq_key_elt _) (x,e) (elements m).
Proof.
unfold In; split; intros (e,H); exists e; [apply elements_1 | apply elements_2]; auto.
Qed.
Lemma map_mapsto_iff : forall m x b (f : elt -> elt'),
MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m.
Proof.
split.
case_eq (find x m); intros.
exists e.
split.
apply (MapsTo_fun (m:=map f m) (x:=x)); auto with map.
apply find_2; auto with map.
assert (In x (map f m)) by (exists b; auto).
destruct (map_2 H1) as (a,H2).
rewrite (find_1 H2) in H; discriminate.
intros (a,(H,H0)).
subst b; auto with map.
Qed.
Lemma map_in_iff : forall m x (f : elt -> elt'),
In x (map f m) <-> In x m.
Proof.
split; intros; eauto with map.
destruct H as (a,H).
exists (f a); auto with map.
Qed.
Lemma mapi_in_iff : forall m x (f:key->elt->elt'),
In x (mapi f m) <-> In x m.
Proof.
split; intros; eauto with map.
destruct H as (a,H).
destruct (mapi_1 f H) as (y,(H0,H1)).
exists (f y a); auto.
Qed.
(** Unfortunately, we don't have simple equivalences for [mapi]
and [MapsTo]. The only correct one needs compatibility of [f]. *)
Lemma mapi_inv : forall m x b (f : key -> elt -> elt'),
MapsTo x b (mapi f m) ->
exists a, exists y, E.eq y x /\ b = f y a /\ MapsTo x a m.
Proof.
intros; case_eq (find x m); intros.
exists e.
destruct (@mapi_1 _ _ m x e f) as (y,(H1,H2)).
apply find_2; auto with map.
exists y; repeat split; auto with map.
apply (MapsTo_fun (m:=mapi f m) (x:=x)); auto with map.
assert (In x (mapi f m)) by (exists b; auto).
destruct (mapi_2 H1) as (a,H2).
rewrite (find_1 H2) in H0; discriminate.
Qed.
Lemma mapi_1bis : forall m x e (f:key->elt->elt'),
(forall x y e, E.eq x y -> f x e = f y e) ->
MapsTo x e m -> MapsTo x (f x e) (mapi f m).
Proof.
intros.
destruct (mapi_1 f H0) as (y,(H1,H2)).
replace (f x e) with (f y e) by auto.
auto.
Qed.
Lemma mapi_mapsto_iff : forall m x b (f:key->elt->elt'),
(forall x y e, E.eq x y -> f x e = f y e) ->
(MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m).
Proof.
split.
intros.
destruct (mapi_inv H0) as (a,(y,(H1,(H2,H3)))).
exists a; split; auto.
subst b; auto.
intros (a,(H0,H1)).
subst b.
apply mapi_1bis; auto.
Qed.
(** Things are even worse for [map2] : we don't try to state any
equivalence, see instead boolean results below. *)
End IffSpec.
(** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *)
Ltac map_iff :=
repeat (progress (
rewrite add_mapsto_iff || rewrite add_in_iff ||
rewrite remove_mapsto_iff || rewrite remove_in_iff ||
rewrite empty_mapsto_iff || rewrite empty_in_iff ||
rewrite map_mapsto_iff || rewrite map_in_iff ||
rewrite mapi_in_iff)).
(** ** Specifications written using boolean predicates *)
Section BoolSpec.
Lemma mem_find_b : forall (elt:Set)(m:t elt)(x:key), mem x m = if find x m then true else false.
Proof.
intros.
generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In.
destruct (find x m); destruct (mem x m); auto.
intros.
rewrite <- H0; exists e; rewrite H; auto.
intuition.
destruct H0 as (e,H0).
destruct (H e); intuition discriminate.
Qed.
Variable elt elt' elt'' : Set.
Implicit Types m : t elt.
Implicit Types x y z : key.
Implicit Types e : elt.
Lemma mem_b : forall m x y, E.eq x y -> mem x m = mem y m.
Proof.
intros.
generalize (mem_in_iff m x) (mem_in_iff m y)(In_iff m H).
destruct (mem x m); destruct (mem y m); intuition.
Qed.
Lemma find_o : forall m x y, E.eq x y -> find x m = find y m.
Proof.
intros.
generalize (find_mapsto_iff m x) (find_mapsto_iff m y) (fun e => MapsTo_iff m e H).
destruct (find x m); destruct (find y m); intros.
rewrite <- H0; rewrite H2; rewrite H1; auto.
symmetry; rewrite <- H1; rewrite <- H2; rewrite H0; auto.
rewrite <- H0; rewrite H2; rewrite H1; auto.
auto.
Qed.
Lemma empty_o : forall x, find x (empty elt) = None.
Proof.
intros.
case_eq (find x (empty elt)); intros; auto.
generalize (find_2 H).
rewrite empty_mapsto_iff; intuition.
Qed.
Lemma empty_a : forall x, mem x (empty elt) = false.
Proof.
intros.
case_eq (mem x (empty elt)); intros; auto.
generalize (mem_2 H).
rewrite empty_in_iff; intuition.
Qed.
Lemma add_eq_o : forall m x y e,
E.eq x y -> find y (add x e m) = Some e.
Proof.
auto with map.
Qed.
Lemma add_neq_o : forall m x y e,
~ E.eq x y -> find y (add x e m) = find y m.
Proof.
intros.
case_eq (find y m); intros; auto with map.
case_eq (find y (add x e m)); intros; auto with map.
rewrite <- H0; symmetry.
apply find_1; apply add_3 with x e; auto with map.
Qed.
Hint Resolve add_neq_o : map.
Lemma add_o : forall m x y e,
find y (add x e m) = if eq_dec x y then Some e else find y m.
Proof.
intros; destruct (eq_dec x y); auto with map.
Qed.
Lemma add_eq_b : forall m x y e,
E.eq x y -> mem y (add x e m) = true.
Proof.
intros; rewrite mem_find_b; rewrite add_eq_o; auto.
Qed.
Lemma add_neq_b : forall m x y e,
~E.eq x y -> mem y (add x e m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_neq_o; auto.
Qed.
Lemma add_b : forall m x y e,
mem y (add x e m) = eqb x y || mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_o; unfold eqb.
destruct (eq_dec x y); simpl; auto.
Qed.
Lemma remove_eq_o : forall m x y,
E.eq x y -> find y (remove x m) = None.
Proof.
intros.
generalize (remove_1 (m:=m) H).
generalize (find_mapsto_iff (remove x m) y).
destruct (find y (remove x m)); auto.
destruct 2.
exists e; rewrite H0; auto.
Qed.
Hint Resolve remove_eq_o : map.
Lemma remove_neq_o : forall m x y,
~ E.eq x y -> find y (remove x m) = find y m.
Proof.
intros.
case_eq (find y m); intros; auto with map.
case_eq (find y (remove x m)); intros; auto with map.
rewrite <- H0; symmetry.
apply find_1; apply remove_3 with x; auto with map.
Qed.
Hint Resolve remove_neq_o : map.
Lemma remove_o : forall m x y,
find y (remove x m) = if eq_dec x y then None else find y m.
Proof.
intros; destruct (eq_dec x y); auto with map.
Qed.
Lemma remove_eq_b : forall m x y,
E.eq x y -> mem y (remove x m) = false.
Proof.
intros; rewrite mem_find_b; rewrite remove_eq_o; auto.
Qed.
Lemma remove_neq_b : forall m x y,
~ E.eq x y -> mem y (remove x m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite remove_neq_o; auto.
Qed.
Lemma remove_b : forall m x y,
mem y (remove x m) = negb (eqb x y) && mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
destruct (eq_dec x y); auto.
Qed.
Definition option_map (A:Set)(B:Set)(f:A->B)(o:option A) : option B :=
match o with
| Some a => Some (f a)
| None => None
end.
Lemma map_o : forall m x (f:elt->elt'),
find x (map f m) = option_map f (find x m).
Proof.
intros.
generalize (find_mapsto_iff (map f m) x) (find_mapsto_iff m x)
(fun b => map_mapsto_iff m x b f).
destruct (find x (map f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H; rewrite H1; exists e0; rewrite H0; auto.
destruct (H e) as [_ H2].
rewrite H1 in H2.
destruct H2 as (a,(_,H2)); auto.
rewrite H0 in H2; discriminate.
rewrite <- H; rewrite H1; exists e; rewrite H0; auto.
Qed.
Lemma map_b : forall m x (f:elt->elt'),
mem x (map f m) = mem x m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite map_o.
destruct (find x m); simpl; auto.
Qed.
Lemma mapi_b : forall m x (f:key->elt->elt'),
mem x (mapi f m) = mem x m.
Proof.
intros.
generalize (mem_in_iff (mapi f m) x) (mem_in_iff m x) (mapi_in_iff m x f).
destruct (mem x (mapi f m)); destruct (mem x m); simpl; auto; intros.
symmetry; rewrite <- H0; rewrite <- H1; rewrite H; auto.
rewrite <- H; rewrite H1; rewrite H0; auto.
Qed.
Lemma mapi_o : forall m x (f:key->elt->elt'),
(forall x y e, E.eq x y -> f x e = f y e) ->
find x (mapi f m) = option_map (f x) (find x m).
Proof.
intros.
generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x)
(fun b => mapi_mapsto_iff m x b H).
destruct (find x (mapi f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H0; rewrite H2; exists e0; rewrite H1; auto.
destruct (H0 e) as [_ H3].
rewrite H2 in H3.
destruct H3 as (a,(_,H3)); auto.
rewrite H1 in H3; discriminate.
rewrite <- H0; rewrite H2; exists e; rewrite H1; auto.
Qed.
Lemma map2_1bis : forall (m: t elt)(m': t elt') x
(f:option elt->option elt'->option elt''),
f None None = None ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
intros.
case_eq (find x m); intros.
rewrite <- H0.
apply map2_1; auto with map.
left; exists e; auto with map.
case_eq (find x m'); intros.
rewrite <- H0; rewrite <- H1.
apply map2_1; auto.
right; exists e; auto with map.
rewrite H.
case_eq (find x (map2 f m m')); intros; auto with map.
assert (In x (map2 f m m')) by (exists e; auto with map).
destruct (map2_2 H3) as [(e0,H4)|(e0,H4)].
rewrite (find_1 H4) in H0; discriminate.
rewrite (find_1 H4) in H1; discriminate.
Qed.
Lemma elements_o : forall m x,
find x m = findA (eqb x) (elements m).
Proof.
intros.
assert (forall e, find x m = Some e <-> InA (eq_key_elt (elt:=elt)) (x,e) (elements m)).
intros; rewrite <- find_mapsto_iff; apply elements_mapsto_iff.
assert (H0:=elements_3w m).
generalize (fun e => @findA_NoDupA _ _ _ E.eq_sym E.eq_trans eq_dec (elements m) x e H0).
fold (eqb x).
destruct (find x m); destruct (findA (eqb x) (elements m));
simpl; auto; intros.
symmetry; rewrite <- H1; rewrite <- H; auto.
symmetry; rewrite <- H1; rewrite <- H; auto.
rewrite H; rewrite H1; auto.
Qed.
Lemma elements_b : forall m x,
mem x m = existsb (fun p => eqb x (fst p)) (elements m).
Proof.
intros.
generalize (mem_in_iff m x)(elements_in_iff m x)
(existsb_exists (fun p => eqb x (fst p)) (elements m)).
destruct (mem x m); destruct (existsb (fun p => eqb x (fst p)) (elements m)); auto; intros.
symmetry; rewrite H1.
destruct H0 as (H0,_).
destruct H0 as (e,He); [ intuition |].
rewrite InA_alt in He.
destruct He as ((y,e'),(Ha1,Ha2)).
compute in Ha1; destruct Ha1; subst e'.
exists (y,e); split; simpl; auto.
unfold eqb; destruct (eq_dec x y); intuition.
rewrite <- H; rewrite H0.
destruct H1 as (H1,_).
destruct H1 as ((y,e),(Ha1,Ha2)); [intuition|].
simpl in Ha2.
unfold eqb in *; destruct (eq_dec x y); auto; try discriminate.
exists e; rewrite InA_alt.
exists (y,e); intuition.
compute; auto.
Qed.
End BoolSpec.
End WFacts.
(** * Same facts for full maps *)
Module Facts (M:S).
Module D := OT_as_DT M.E.
Include WFacts D M.
End Facts.
(** * Additional Properties for weak maps
Results about [fold], [elements], induction principles...
*)
Module WProperties (E:DecidableType)(M:WSfun E).
Module Import F:=WFacts E M.
Import M.
Section Elt.
Variable elt:Set.
Definition cardinal (m:t elt) := length (elements m).
Definition Equal (m m':t elt) := forall y, find y m = find y m'.
Definition Add x (e:elt) m m' := forall y, find y m' = find y (add x e m).
Notation eqke := (@eq_key_elt elt).
Notation eqk := (@eq_key elt).
Lemma elements_Empty : forall m:t elt, Empty m <-> elements m = nil.
Proof.
intros.
unfold Empty.
split; intros.
assert (forall a, ~ List.In a (elements m)).
red; intros.
apply (H (fst a) (snd a)).
rewrite elements_mapsto_iff.
rewrite InA_alt; exists a; auto.
split; auto; split; auto.
destruct (elements m); auto.
elim (H0 p); simpl; auto.
red; intros.
rewrite elements_mapsto_iff in H0.
rewrite InA_alt in H0; destruct H0.
rewrite H in H0; destruct H0 as (_,H0); inversion H0.
Qed.
Lemma fold_Empty : forall m (A:Set)(f:key->elt->A->A)(i:A),
Empty m -> fold f m i = i.
Proof.
intros.
rewrite fold_1.
rewrite elements_Empty in H; rewrite H; simpl; auto.
Qed.
Lemma NoDupA_eqk_eqke : forall l, NoDupA eqk l -> NoDupA eqke l.
Proof.
induction 1; auto.
constructor; auto.
contradict H.
destruct x as (x,y).
rewrite InA_alt in *; destruct H as ((a,b),((H1,H2),H3)); simpl in *.
exists (a,b); auto.
Qed.
Lemma fold_Equal : forall m1 m2 (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
(f:key->elt->A->A)(i:A),
compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
transpose eqA (fun y => f (fst y) (snd y)) ->
Equal m1 m2 ->
eqA (fold f m1 i) (fold f m2 i).
Proof.
assert (eqke_refl : forall p, eqke p p).
red; auto.
assert (eqke_sym : forall p p', eqke p p' -> eqke p' p).
intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition.
assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p'').
intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl.
intuition; eauto; congruence.
intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
apply fold_right_equivlistA with (eqA:=eqke) (eqB:=eqA); auto.
apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
red; intros.
do 2 rewrite InA_rev.
destruct x; do 2 rewrite <- elements_mapsto_iff.
do 2 rewrite find_mapsto_iff.
rewrite H1; split; auto.
Qed.
Lemma fold_Add : forall m1 m2 x e (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
(f:key->elt->A->A)(i:A),
compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
transpose eqA (fun y =>f (fst y) (snd y)) ->
~In x m1 -> Add x e m1 m2 ->
eqA (fold f m2 i) (f x e (fold f m1 i)).
Proof.
assert (eqke_refl : forall p, eqke p p).
red; auto.
assert (eqke_sym : forall p p', eqke p p' -> eqke p' p).
intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition.
assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p'').
intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl.
intuition; eauto; congruence.
intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
change (f x e (fold_right f' i (rev (elements m1))))
with (f' (x,e) (fold_right f' i (rev (elements m1)))).
apply fold_right_add with (eqA:=eqke)(eqB:=eqA); auto.
apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
rewrite InA_rev.
contradict H1.
exists e.
rewrite elements_mapsto_iff; auto.
intros a.
rewrite InA_cons; do 2 rewrite InA_rev;
destruct a as (a,b); do 2 rewrite <- elements_mapsto_iff.
do 2 rewrite find_mapsto_iff; unfold eq_key_elt; simpl.
rewrite H2.
rewrite add_o.
destruct (eq_dec x a); intuition.
inversion H3; auto.
f_equal; auto.
elim H1.
exists b; apply MapsTo_1 with a; auto with map.
elim n; auto.
Qed.
Lemma cardinal_fold : forall m, cardinal m = fold (fun _ _ => S) m 0.
Proof.
intros; unfold cardinal; rewrite fold_1.
symmetry; apply fold_left_length; auto.
Qed.
Lemma cardinal_Empty : forall m, Empty m <-> cardinal m = 0.
Proof.
intros.
rewrite elements_Empty.
unfold cardinal.
destruct (elements m); intuition; discriminate.
Qed.
Lemma Equal_cardinal : forall m m', Equal m m' -> cardinal m = cardinal m'.
Proof.
intros; do 2 rewrite cardinal_fold.
apply fold_Equal with (eqA:=@eq _); auto.
constructor; auto; congruence.
red; auto.
red; auto.
Qed.
Lemma cardinal_1 : forall m, Empty m -> cardinal m = 0.
Proof.
intros; rewrite <- cardinal_Empty; auto.
Qed.
Lemma cardinal_2 :
forall m m' x e, ~ In x m -> Add x e m m' -> cardinal m' = S (cardinal m).
Proof.
intros; do 2 rewrite cardinal_fold.
change S with ((fun _ _ => S) x e).
apply fold_Add; auto.
constructor; intros; auto; congruence.
red; simpl; auto.
red; simpl; auto.
Qed.
Lemma cardinal_inv_1 : forall m, cardinal m = 0 -> Empty m.
Proof.
intros; rewrite cardinal_Empty; auto.
Qed.
Hint Resolve cardinal_inv_1 : map.
Lemma cardinal_inv_2 :
forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }.
Proof.
unfold cardinal; intros.
generalize (elements_mapsto_iff m).
destruct (elements m); try discriminate.
exists p; auto.
rewrite H0; destruct p; simpl; auto.
constructor; red; auto.
Qed.
Lemma cardinal_inv_2b :
forall m, cardinal m <> 0 -> { p : key*elt | MapsTo (fst p) (snd p) m }.
Proof.
intros.
generalize (@cardinal_inv_2 m); destruct cardinal.
elim H;auto.
eauto.
Qed.
Lemma map_induction :
forall P : t elt -> Type,
(forall m, Empty m -> P m) ->
(forall m m', P m -> forall x e, ~In x m -> Add x e m m' -> P m') ->
forall m, P m.
Proof.
intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
apply X; apply cardinal_inv_1; auto.
destruct (cardinal_inv_2 (sym_eq Heqn)) as ((x,e),H0); simpl in *.
assert (Add x e (remove x m) m).
red; intros.
rewrite add_o; rewrite remove_o; destruct (eq_dec x y); eauto with map.
apply X0 with (remove x m) x e; auto with map.
apply IHn; auto with map.
assert (S n = S (cardinal (remove x m))).
rewrite Heqn; eapply cardinal_2; eauto with map.
inversion H1; auto with map.
Qed.
End Elt.
End WProperties.
(** * Same Properties for full maps *)
Module Properties (M:S).
Module D := OT_as_DT M.E.
Include WProperties D M.
End Properties.
(** * Properties specific to maps with ordered keys *)
Module OrdProperties (M:S).
Module Import ME := OrderedTypeFacts M.E.
Module Import O:=KeyOrderedType M.E.
Module Import P:=Properties M.
Import F.
Import M.
Section Elt.
Variable elt:Set.
Notation eqke := (@eqke elt).
Notation eqk := (@eqk elt).
Notation ltk := (@ltk elt).
Notation cardinal := (@cardinal elt).
Notation Equal := (@P.Equal elt).
Notation Add := (@Add elt).
Definition Above x (m:t elt) := forall y, In y m -> E.lt y x.
Definition Below x (m:t elt) := forall y, In y m -> E.lt x y.
Section Elements.
Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt),
sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'.
Proof.
apply SortA_equivlistA_eqlistA; eauto;
unfold O.eqke, O.ltk; simpl; intuition; eauto.
Qed.
Ltac clean_eauto := unfold O.eqke, O.ltk; simpl; intuition; eauto.
Definition gtb (p p':key*elt) := match E.compare (fst p) (fst p') with GT _ => true | _ => false end.
Definition leb p := fun p' => negb (gtb p p').
Definition elements_lt p m := List.filter (gtb p) (elements m).
Definition elements_ge p m := List.filter (leb p) (elements m).
Lemma gtb_1 : forall p p', gtb p p' = true <-> ltk p' p.
Proof.
intros (x,e) (y,e'); unfold gtb, O.ltk; simpl.
destruct (E.compare x y); intuition; try discriminate; ME.order.
Qed.
Lemma leb_1 : forall p p', leb p p' = true <-> ~ltk p' p.
Proof.
intros (x,e) (y,e'); unfold leb, gtb, O.ltk; simpl.
destruct (E.compare x y); intuition; try discriminate; ME.order.
Qed.
Lemma gtb_compat : forall p, compat_bool eqke (gtb p).
Proof.
red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H.
generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e''));
destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); auto.
unfold O.ltk in *; simpl in *; intros.
symmetry; rewrite H2.
apply ME.eq_lt with a; auto.
rewrite <- H1; auto.
unfold O.ltk in *; simpl in *; intros.
rewrite H1.
apply ME.eq_lt with b; auto.
rewrite <- H2; auto.
Qed.
Lemma leb_compat : forall p, compat_bool eqke (leb p).
Proof.
red; intros x a b H.
unfold leb; f_equal; apply gtb_compat; auto.
Qed.
Hint Resolve gtb_compat leb_compat elements_3 : map.
Lemma elements_split : forall p m,
elements m = elements_lt p m ++ elements_ge p m.
Proof.
unfold elements_lt, elements_ge, leb; intros.
apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with map.
intros; destruct x; destruct y; destruct p.
rewrite gtb_1 in H; unfold O.ltk in H; simpl in *.
assert (~ltk (t1,e0) (k,e1)).
unfold gtb, O.ltk in *; simpl in *.
destruct (E.compare k t1); intuition; try discriminate; ME.order.
unfold O.ltk in *; simpl in *; ME.order.
Qed.
Lemma elements_Add : forall m m' x e, ~In x m -> Add x e m m' ->
eqlistA eqke (elements m')
(elements_lt (x,e) m ++ (x,e):: elements_ge (x,e) m).
Proof.
intros; unfold elements_lt, elements_ge.
apply sort_equivlistA_eqlistA; auto with map.
apply (@SortA_app _ eqke); auto with map.
apply (@filter_sort _ eqke); auto with map; clean_eauto.
constructor; auto with map.
apply (@filter_sort _ eqke); auto with map; clean_eauto.
rewrite (@InfA_alt _ eqke); auto with map; try (clean_eauto; fail).
apply (@filter_sort _ eqke); auto with map; clean_eauto.
intros.
rewrite filter_InA in H1; auto with map; destruct H1.
rewrite leb_1 in H2.
destruct y; unfold O.ltk in *; simpl in *.
rewrite <- elements_mapsto_iff in H1.
assert (~E.eq x t0).
contradict H.
exists e0; apply MapsTo_1 with t0; auto.
ME.order.
intros.
rewrite filter_InA in H1; auto with map; destruct H1.
rewrite gtb_1 in H3.
destruct y; destruct x0; unfold O.ltk in *; simpl in *.
inversion_clear H2.
red in H4; simpl in *; destruct H4.
ME.order.
rewrite filter_InA in H4; auto with map; destruct H4.
rewrite leb_1 in H4.
unfold O.ltk in *; simpl in *; ME.order.
red; intros a; destruct a.
rewrite InA_app_iff; rewrite InA_cons.
do 2 (rewrite filter_InA; auto with map).
do 2 rewrite <- elements_mapsto_iff.
rewrite leb_1; rewrite gtb_1.
rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
rewrite add_mapsto_iff.
unfold O.eqke, O.ltk; simpl.
destruct (E.compare t0 x); intuition.
right; split; auto; ME.order.
ME.order.
elim H.
exists e0; apply MapsTo_1 with t0; auto.
right; right; split; auto; ME.order.
ME.order.
right; split; auto; ME.order.
Qed.
Lemma elements_Add_Above : forall m m' x e,
Above x m -> Add x e m m' ->
eqlistA eqke (elements m') (elements m ++ (x,e)::nil).
Proof.
intros.
apply sort_equivlistA_eqlistA; auto with map.
apply (@SortA_app _ eqke); auto with map.
intros.
inversion_clear H2.
destruct x0; destruct y.
rewrite <- elements_mapsto_iff in H1.
unfold O.eqke, O.ltk in *; simpl in *; destruct H3.
apply ME.lt_eq with x; auto.
apply H; firstorder.
inversion H3.
red; intros a; destruct a.
rewrite InA_app_iff; rewrite InA_cons; rewrite InA_nil.
do 2 rewrite <- elements_mapsto_iff.
rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
rewrite add_mapsto_iff; unfold O.eqke; simpl.
intuition.
destruct (ME.eq_dec x t0); auto.
elimtype False.
assert (In t0 m).
exists e0; auto.
generalize (H t0 H1).
ME.order.
Qed.
Lemma elements_Add_Below : forall m m' x e,
Below x m -> Add x e m m' ->
eqlistA eqke (elements m') ((x,e)::elements m).
Proof.
intros.
apply sort_equivlistA_eqlistA; auto with map.
change (sort ltk (((x,e)::nil) ++ elements m)).
apply (@SortA_app _ eqke); auto with map.
intros.
inversion_clear H1.
destruct y; destruct x0.
rewrite <- elements_mapsto_iff in H2.
unfold O.eqke, O.ltk in *; simpl in *; destruct H3.
apply ME.eq_lt with x; auto.
apply H; firstorder.
inversion H3.
red; intros a; destruct a.
rewrite InA_cons.
do 2 rewrite <- elements_mapsto_iff.
rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
rewrite add_mapsto_iff; unfold O.eqke; simpl.
intuition.
destruct (ME.eq_dec x t0); auto.
elimtype False.
assert (In t0 m).
exists e0; auto.
generalize (H t0 H1).
ME.order.
Qed.
Lemma elements_Equal_eqlistA : forall (m m': t elt),
Equal m m' -> eqlistA eqke (elements m) (elements m').
Proof.
intros.
apply sort_equivlistA_eqlistA; auto with map.
red; intros.
destruct x; do 2 rewrite <- elements_mapsto_iff.
do 2 rewrite find_mapsto_iff; rewrite H; split; auto.
Qed.
End Elements.
Section Min_Max_Elt.
(** We emulate two [max_elt] and [min_elt] functions. *)
Fixpoint max_elt_aux (l:list (key*elt)) := match l with
| nil => None
| (x,e)::nil => Some (x,e)
| (x,e)::l => max_elt_aux l
end.
Definition max_elt m := max_elt_aux (elements m).
Lemma max_elt_Above :
forall m x e, max_elt m = Some (x,e) -> Above x (remove x m).
Proof.
red; intros.
rewrite remove_in_iff in H0.
destruct H0.
rewrite elements_in_iff in H1.
destruct H1.
unfold max_elt in *.
generalize (elements_3 m).
revert x e H y x0 H0 H1.
induction (elements m).
simpl; intros; try discriminate.
intros.
destruct a; destruct l; simpl in *.
injection H; clear H; intros; subst.
inversion_clear H1.
red in H; simpl in *; intuition.
elim H0; eauto.
inversion H.
change (max_elt_aux (p::l) = Some (x,e)) in H.
generalize (IHl x e H); clear IHl; intros IHl.
inversion_clear H1; [ | inversion_clear H2; eauto ].
red in H3; simpl in H3; destruct H3.
destruct p as (p1,p2).
destruct (ME.eq_dec p1 x).
apply ME.lt_eq with p1; auto.
inversion_clear H2.
inversion_clear H5.
red in H2; simpl in H2; ME.order.
apply E.lt_trans with p1; auto.
inversion_clear H2.
inversion_clear H5.
red in H2; simpl in H2; ME.order.
eapply IHl; eauto.
econstructor; eauto.
red; eauto.
inversion H2; auto.
Qed.
Lemma max_elt_MapsTo :
forall m x e, max_elt m = Some (x,e) -> MapsTo x e m.
Proof.
intros.
unfold max_elt in *.
rewrite elements_mapsto_iff.
induction (elements m).
simpl; try discriminate.
destruct a; destruct l; simpl in *.
injection H; intros; subst; constructor; red; auto.
constructor 2; auto.
Qed.
Lemma max_elt_Empty :
forall m, max_elt m = None -> Empty m.
Proof.
intros.
unfold max_elt in *.
rewrite elements_Empty.
induction (elements m); auto.
destruct a; destruct l; simpl in *; try discriminate.
assert (H':=IHl H); discriminate.
Qed.
Definition min_elt m : option (key*elt) := match elements m with
| nil => None
| (x,e)::_ => Some (x,e)
end.
Lemma min_elt_Below :
forall m x e, min_elt m = Some (x,e) -> Below x (remove x m).
Proof.
unfold min_elt, Below; intros.
rewrite remove_in_iff in H0; destruct H0.
rewrite elements_in_iff in H1.
destruct H1.
generalize (elements_3 m).
destruct (elements m).
try discriminate.
destruct p; injection H; intros; subst.
inversion_clear H1.
red in H2; destruct H2; simpl in *; ME.order.
inversion_clear H4.
rewrite (@InfA_alt _ eqke) in H3; eauto.
apply (H3 (y,x0)); auto.
unfold lt_key; simpl; intuition; eauto.
intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto.
intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto.
Qed.
Lemma min_elt_MapsTo :
forall m x e, min_elt m = Some (x,e) -> MapsTo x e m.
Proof.
intros.
unfold min_elt in *.
rewrite elements_mapsto_iff.
destruct (elements m).
simpl; try discriminate.
destruct p; simpl in *.
injection H; intros; subst; constructor; red; auto.
Qed.
Lemma min_elt_Empty :
forall m, min_elt m = None -> Empty m.
Proof.
intros.
unfold min_elt in *.
rewrite elements_Empty.
destruct (elements m); auto.
destruct p; simpl in *; discriminate.
Qed.
End Min_Max_Elt.
Section Induction_Principles.
Lemma map_induction_max :
forall P : t elt -> Type,
(forall m, Empty m -> P m) ->
(forall m m', P m -> forall x e, Above x m -> Add x e m m' -> P m') ->
forall m, P m.
Proof.
intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
apply X; apply cardinal_inv_1; auto.
case_eq (max_elt m); intros.
destruct p.
assert (Add k e (remove k m) m).
red; intros.
rewrite add_o; rewrite remove_o; destruct (eq_dec k y); eauto.
apply find_1; apply MapsTo_1 with k; auto.
apply max_elt_MapsTo; auto.
apply X0 with (remove k m) k e; auto with map.
apply IHn.
assert (S n = S (cardinal (remove k m))).
rewrite Heqn.
eapply cardinal_2; eauto with map.
inversion H1; auto.
eapply max_elt_Above; eauto.
apply X; apply max_elt_Empty; auto.
Qed.
Lemma map_induction_min :
forall P : t elt -> Type,
(forall m, Empty m -> P m) ->
(forall m m', P m -> forall x e, Below x m -> Add x e m m' -> P m') ->
forall m, P m.
Proof.
intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
apply X; apply cardinal_inv_1; auto.
case_eq (min_elt m); intros.
destruct p.
assert (Add k e (remove k m) m).
red; intros.
rewrite add_o; rewrite remove_o; destruct (eq_dec k y); eauto.
apply find_1; apply MapsTo_1 with k; auto.
apply min_elt_MapsTo; auto.
apply X0 with (remove k m) k e; auto.
apply IHn.
assert (S n = S (cardinal (remove k m))).
rewrite Heqn.
eapply cardinal_2; eauto with map.
inversion H1; auto.
eapply min_elt_Below; eauto.
apply X; apply min_elt_Empty; auto.
Qed.
End Induction_Principles.
Section Fold_properties.
(** The following lemma has already been proved on Weak Maps,
but with one additionnal hypothesis (some [transpose] fact). *)
Lemma fold_Equal : forall s1 s2 (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
(f:key->elt->A->A)(i:A),
compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
Equal s1 s2 ->
eqA (fold f s1 i) (fold f s2 i).
Proof.
intros.
do 2 rewrite fold_1.
do 2 rewrite <- fold_left_rev_right.
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
apply eqlistA_rev.
apply elements_Equal_eqlistA; auto.
Qed.
Lemma fold_Add : forall s1 s2 x e (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
(f:key->elt->A->A)(i:A),
compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
transpose eqA (fun y =>f (fst y) (snd y)) ->
~In x s1 -> Add x e s1 s2 ->
eqA (fold f s2 i) (f x e (fold f s1 i)).
Proof.
intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
change (f x e (fold_right f' i (rev (elements s1))))
with (f' (x,e) (fold_right f' i (rev (elements s1)))).
trans_st (fold_right f' i
(rev (elements_lt (x, e) s1 ++ (x,e) :: elements_ge (x, e) s1))).
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
apply eqlistA_rev.
apply elements_Add; auto.
rewrite distr_rev; simpl.
rewrite app_ass; simpl.
rewrite (elements_split (x,e) s1).
rewrite distr_rev; simpl.
apply fold_right_commutes with (eqA:=eqke) (eqB:=eqA); auto.
Qed.
Lemma fold_Add_Above : forall s1 s2 x e (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
(f:key->elt->A->A)(i:A),
compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
Above x s1 -> Add x e s1 s2 ->
eqA (fold f s2 i) (f x e (fold f s1 i)).
Proof.
intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
trans_st (fold_right f' i (rev (elements s1 ++ (x,e)::nil))).
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
apply eqlistA_rev.
apply elements_Add_Above; auto.
rewrite distr_rev; simpl.
refl_st.
Qed.
Lemma fold_Add_Below : forall s1 s2 x e (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
(f:key->elt->A->A)(i:A),
compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
Below x s1 -> Add x e s1 s2 ->
eqA (fold f s2 i) (fold f s1 (f x e i)).
Proof.
intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
trans_st (fold_right f' i (rev (((x,e)::nil)++elements s1))).
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
apply eqlistA_rev.
simpl; apply elements_Add_Below; auto.
rewrite distr_rev; simpl.
rewrite fold_right_app.
refl_st.
Qed.
End Fold_properties.
End Elt.
End OrdProperties.
|