aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FMapFacts.v
blob: 6b1ef79c309d4262c94baeff45c4102bef27b67b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

(** * Finite maps library *)

(** This functor derives additional facts from [FMapInterface.S]. These
  facts are mainly the specifications of [FMapInterface.S] written using 
  different styles: equivalence and boolean equalities. 
*)

Require Import Bool.
Require Import OrderedType.
Require Export FMapInterface. 
Set Implicit Arguments.
Unset Strict Implicit.

Module Facts (M: S).
Module ME := OrderedTypeFacts M.E.
Import ME.
Import M.
Import Logic. (* to unmask [eq] *)  
Import Peano. (* to unmask [lt] *)

Lemma MapsTo_fun : forall (elt:Set) m x (e e':elt), 
  MapsTo x e m -> MapsTo x e' m -> e=e'.
Proof.
intros.
generalize (find_1 H) (find_1 H0); clear H H0.
intros; rewrite H in H0; injection H0; auto.
Qed.

(** * Specifications written using equivalences *)

Section IffSpec. 
Variable elt elt' elt'': Set.
Implicit Type m: t elt.
Implicit Type x y z: key.
Implicit Type e: elt.

Lemma MapsTo_iff : forall m x y e, E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
Proof.
split; apply MapsTo_1; auto.
Qed.

Lemma In_iff : forall m x y, E.eq x y -> (In x m <-> In y m).
Proof.
unfold In.
split; intros (e0,H0); exists e0.
apply (MapsTo_1 H H0); auto.
apply (MapsTo_1 (E.eq_sym H) H0); auto.
Qed.

Lemma find_mapsto_iff : forall m x e, MapsTo x e m <-> find x m = Some e.
Proof.
split; [apply find_1|apply find_2].
Qed.

Lemma not_find_mapsto_iff : forall m x, ~In x m <-> find x m = None.
Proof.
intros.
generalize (find_mapsto_iff m x); destruct (find x m).
split; intros; try discriminate.
destruct H0.
exists e; rewrite H; auto.
split; auto.
intros; intros (e,H1).
rewrite H in H1; discriminate.
Qed.

Lemma mem_in_iff : forall m x, In x m <-> mem x m = true.
Proof.
split; [apply mem_1|apply mem_2].
Qed.

Lemma not_mem_in_iff : forall m x, ~In x m <-> mem x m = false.
Proof.
intros; rewrite mem_in_iff; destruct (mem x m); intuition.
Qed.

Lemma equal_iff : forall m m' cmp, Equal cmp m m' <-> equal cmp m m' = true.
Proof. 
split; [apply equal_1|apply equal_2].
Qed.

Lemma empty_mapsto_iff : forall x e, MapsTo x e (empty elt) <-> False.
Proof.
intuition; apply (empty_1 H).
Qed.

Lemma empty_in_iff : forall x, In x (empty elt) <-> False.
Proof.
unfold In.
split; [intros (e,H); rewrite empty_mapsto_iff in H|]; intuition.
Qed.

Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true. 
Proof. 
split; [apply is_empty_1|apply is_empty_2].
Qed.

Lemma add_mapsto_iff : forall m x y e e', 
  MapsTo y e' (add x e m) <-> 
     (E.eq x y /\ e=e') \/ 
     (~E.eq x y /\ MapsTo y e' m).
Proof. 
intros.
intuition.
destruct (eq_dec x y); [left|right].
split; auto.
symmetry; apply (MapsTo_fun (e':=e) H); auto.
split; auto; apply add_3 with x e; auto.
subst; auto.
Qed.

Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m.
Proof. 
unfold In; split.
intros (e',H).
destruct (eq_dec x y) as [E|E]; auto.
right; exists e'; auto.
apply (add_3 E H).
destruct (eq_dec x y) as [E|E]; auto.
intros.
exists e; apply add_1; auto.
intros [H|(e',H)].
destruct E; auto.
exists e'; apply add_2; auto.
Qed.

Lemma add_neq_mapsto_iff : forall m x y e e', 
 ~ E.eq x y -> (MapsTo y e' (add x e m)  <-> MapsTo y e' m).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.

Lemma add_neq_in_iff : forall m x y e, 
 ~ E.eq x y -> (In y (add x e m)  <-> In y m).
Proof.
split; intros (e',H0); exists e'.
apply (add_3 H H0).
apply add_2; auto.
Qed.

Lemma remove_mapsto_iff : forall m x y e, 
  MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m.
Proof. 
intros.
split; intros.
split.
assert (In y (remove x m)) by (exists e; auto).
intro H1; apply (remove_1 H1 H0).
apply remove_3 with x; auto.
apply remove_2; intuition.
Qed.

Lemma remove_in_iff : forall m x y, In y (remove x m) <-> ~E.eq x y /\ In y m.
Proof. 
unfold In; split.
intros (e,H).
split.
assert (In y (remove x m)) by (exists e; auto).
intro H1; apply (remove_1 H1 H0).
exists e; apply remove_3 with x; auto.
intros (H,(e,H0)); exists e; apply remove_2; auto.
Qed.

Lemma remove_neq_mapsto_iff : forall m x y e, 
 ~ E.eq x y -> (MapsTo y e (remove x m)  <-> MapsTo y e m).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.

Lemma remove_neq_in_iff : forall m x y, 
 ~ E.eq x y -> (In y (remove x m)  <-> In y m).
Proof.
split; intros (e',H0); exists e'.
apply (remove_3 H0).
apply remove_2; auto.
Qed.

Lemma elements_mapsto_iff : forall m x e, 
 MapsTo x e m <-> InA (@eq_key_elt _) (x,e) (elements m).
Proof. 
split; [apply elements_1 | apply elements_2].
Qed.

Lemma elements_in_iff : forall m x, 
 In x m <-> exists e, InA (@eq_key_elt _) (x,e) (elements m).
Proof. 
unfold In; split; intros (e,H); exists e; [apply elements_1 | apply elements_2]; auto.
Qed.

Lemma map_mapsto_iff : forall m x b (f : elt -> elt'), 
 MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m.
Proof.
split.
case_eq (find x m); intros.
exists e.
split.
apply (MapsTo_fun (m:=map f m) (x:=x)); auto.
apply find_2; auto.
assert (In x (map f m)) by (exists b; auto).
destruct (map_2 H1) as (a,H2).
rewrite (find_1 H2) in H; discriminate.
intros (a,(H,H0)).
subst b; auto.
Qed.

Lemma map_in_iff : forall m x (f : elt -> elt'), 
 In x (map f m) <-> In x m.
Proof.
split; intros; eauto.
destruct H as (a,H).
exists (f a); auto.
Qed.

Lemma mapi_in_iff : forall m x (f:key->elt->elt'),
 In x (mapi f m) <-> In x m.
Proof.
split; intros; eauto.
destruct H as (a,H).
destruct (mapi_1 f H) as (y,(H0,H1)).
exists (f y a); auto.
Qed.

(* Unfortunately, we don't have simple equivalences for [mapi] 
  and [MapsTo]. The only correct one needs compatibility of [f]. *) 

Lemma mapi_inv : forall m x b (f : key -> elt -> elt'), 
 MapsTo x b (mapi f m) -> 
 exists a, exists y, E.eq y x /\ b = f y a /\ MapsTo x a m.
Proof.
intros; case_eq (find x m); intros.
exists e.
destruct (@mapi_1 _ _ m x e f) as (y,(H1,H2)).
apply find_2; auto.
exists y; repeat split; auto.
apply (MapsTo_fun (m:=mapi f m) (x:=x)); auto.
assert (In x (mapi f m)) by (exists b; auto).
destruct (mapi_2 H1) as (a,H2).
rewrite (find_1 H2) in H0; discriminate.
Qed.

Lemma mapi_1bis : forall m x e (f:key->elt->elt'), 
 (forall x y e, E.eq x y -> f x e = f y e) -> 
 MapsTo x e m -> MapsTo x (f x e) (mapi f m).
Proof.
intros.
destruct (mapi_1 f H0) as (y,(H1,H2)).
replace (f x e) with (f y e) by auto.
auto.
Qed.

Lemma mapi_mapsto_iff : forall m x b (f:key->elt->elt'),
 (forall x y e, E.eq x y -> f x e = f y e) -> 
 (MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m).
Proof.
split.
intros.
destruct (mapi_inv H0) as (a,(y,(H1,(H2,H3)))).
exists a; split; auto.
subst b; auto.
intros (a,(H0,H1)).
subst b.
apply mapi_1bis; auto.
Qed.

(** Things are even worse for [map2] : we don't try to state any 
 equivalence, see instead boolean results below. *)

End IffSpec.

(** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *)
  
Ltac map_iff := 
 repeat (progress (
  rewrite add_mapsto_iff || rewrite add_in_iff ||
  rewrite remove_mapsto_iff || rewrite remove_in_iff ||
  rewrite empty_mapsto_iff || rewrite empty_in_iff ||
  rewrite map_mapsto_iff || rewrite map_in_iff ||
  rewrite mapi_in_iff)).

(**  * Specifications written using boolean predicates *)

Section BoolSpec.

Lemma mem_find_b : forall (elt:Set)(m:t elt)(x:key), mem x m = if find x m then true else false. 
Proof.
intros.
generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In.
destruct (find x m); destruct (mem x m); auto.
intros.
rewrite <- H0; exists e; rewrite H; auto.
intuition.
destruct H0 as (e,H0).
destruct (H e); intuition discriminate.
Qed.

Variable elt elt' elt'' : Set.
Implicit Types m : t elt.
Implicit Types x y z : key.
Implicit Types e : elt.

Lemma mem_b : forall m x y, E.eq x y -> mem x m = mem y m.
Proof. 
intros.
generalize (mem_in_iff m x) (mem_in_iff m y)(In_iff m H).
destruct (mem x m); destruct (mem y m); intuition.
Qed.

Lemma find_o : forall m x y, E.eq x y -> find x m = find y m.
Proof.
intros.
generalize (find_mapsto_iff m x) (find_mapsto_iff m y) (fun e => MapsTo_iff m e H).
destruct (find x m); destruct (find y m); intros.
rewrite <- H0; rewrite H2; rewrite H1; auto.
symmetry; rewrite <- H1; rewrite <- H2; rewrite H0; auto.
rewrite <- H0; rewrite H2; rewrite H1; auto.
auto.
Qed.

Lemma empty_o : forall x, find x (empty elt) = None.
Proof.
intros.
case_eq (find x (empty elt)); intros; auto.
generalize (find_2 H).
rewrite empty_mapsto_iff; intuition.
Qed.

Lemma empty_a : forall x, mem x (empty elt) = false.
Proof.
intros.
case_eq (mem x (empty elt)); intros; auto.
generalize (mem_2 H).
rewrite empty_in_iff; intuition.
Qed.

Lemma add_eq_o : forall m x y e, 
 E.eq x y -> find y (add x e m) = Some e.
Proof.
auto.
Qed.

Lemma add_neq_o : forall m x y e, 
 ~ E.eq x y -> find y (add x e m) = find y m. 
Proof.
intros.
case_eq (find y m); intros; auto.
case_eq (find y (add x e m)); intros; auto.
rewrite <- H0; symmetry.
apply find_1; apply add_3 with x e; auto.
Qed.
Hint Resolve add_neq_o.

Lemma add_o : forall m x y e, 
 find y (add x e m) = if eq_dec x y then Some e else find y m.
Proof.
intros; destruct (eq_dec x y); auto.
Qed.

Lemma add_eq_b : forall m x y e, 
 E.eq x y -> mem y (add x e m) = true.
Proof.
intros; rewrite mem_find_b; rewrite add_eq_o; auto.
Qed.

Lemma add_neq_b : forall m x y e, 
 ~E.eq x y -> mem y (add x e m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_neq_o; auto.
Qed.

Lemma add_b : forall m x y e, 
 mem y (add x e m) = eqb x y || mem y m. 
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_o; unfold eqb.
destruct (eq_dec x y); simpl; auto.
Qed.

Lemma remove_eq_o : forall m x y, 
 E.eq x y -> find y (remove x m) = None.
Proof.
intros.
generalize (remove_1 (m:=m) H).
generalize (find_mapsto_iff (remove x m) y).
destruct (find y (remove x m)); auto.
destruct 2.
exists e; rewrite H0; auto.
Qed.
Hint Resolve remove_eq_o.

Lemma remove_neq_o : forall m x y, 
 ~ E.eq x y -> find y (remove x m) = find y m. 
Proof.
intros.
case_eq (find y m); intros; auto.
case_eq (find y (remove x m)); intros; auto.
rewrite <- H0; symmetry.
apply find_1; apply remove_3 with x; auto.
Qed.
Hint Resolve remove_neq_o.

Lemma remove_o : forall m x y, 
 find y (remove x m) = if eq_dec x y then None else find y m.
Proof.
intros; destruct (eq_dec x y); auto.
Qed.

Lemma remove_eq_b : forall m x y, 
 E.eq x y -> mem y (remove x m) = false.
Proof.
intros; rewrite mem_find_b; rewrite remove_eq_o; auto.
Qed.

Lemma remove_neq_b : forall m x y, 
 ~ E.eq x y -> mem y (remove x m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite remove_neq_o; auto.
Qed.

Lemma remove_b : forall m x y, 
 mem y (remove x m) = negb (eqb x y) && mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
destruct (eq_dec x y); auto.
Qed.

Definition option_map (A:Set)(B:Set)(f:A->B)(o:option A) : option B := 
 match o with 
  | Some a => Some (f a)
  | None => None
 end.

Lemma map_o : forall m x (f:elt->elt'), 
 find x (map f m) = option_map f (find x m). 
Proof.
intros.
generalize (find_mapsto_iff (map f m) x) (find_mapsto_iff m x)
  (fun b => map_mapsto_iff m x b f).
destruct (find x (map f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H; rewrite H1; exists e0; rewrite H0; auto.
destruct (H e) as [_ H2].
rewrite H1 in H2.
destruct H2 as (a,(_,H2)); auto.
rewrite H0 in H2; discriminate.
rewrite <- H; rewrite H1; exists e; rewrite H0; auto.
Qed.

Lemma map_b : forall m x (f:elt->elt'), 
 mem x (map f m) = mem x m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite map_o.
destruct (find x m); simpl; auto.
Qed.

Lemma mapi_b : forall m x (f:key->elt->elt'), 
 mem x (mapi f m) = mem x m.
Proof.
intros.
generalize (mem_in_iff (mapi f m) x) (mem_in_iff m x) (mapi_in_iff m x f).
destruct (mem x (mapi f m)); destruct (mem x m); simpl; auto; intros.
symmetry; rewrite <- H0; rewrite <- H1; rewrite H; auto.
rewrite <- H; rewrite H1; rewrite H0; auto.
Qed.

Lemma mapi_o : forall m x (f:key->elt->elt'), 
 (forall x y e, E.eq x y -> f x e = f y e) -> 
 find x (mapi f m) = option_map (f x) (find x m).
Proof.
intros.
generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x) 
  (fun b => mapi_mapsto_iff m x b H).
destruct (find x (mapi f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H0; rewrite H2; exists e0; rewrite H1; auto.
destruct (H0 e) as [_ H3].
rewrite H2 in H3.
destruct H3 as (a,(_,H3)); auto.
rewrite H1 in H3; discriminate.
rewrite <- H0; rewrite H2; exists e; rewrite H1; auto.
Qed.

Lemma map2_1bis : forall (m: t elt)(m': t elt') x 
 (f:option elt->option elt'->option elt''), 
 f None None = None -> 
 find x (map2 f m m') = f (find x m) (find x m').       
Proof.
intros.
case_eq (find x m); intros.
rewrite <- H0.
apply map2_1; auto.
left; exists e; auto.
case_eq (find x m'); intros.
rewrite <- H0; rewrite <- H1.
apply map2_1; auto.
right; exists e; auto.
rewrite H.
case_eq (find x (map2 f m m')); intros; auto.
assert (In x (map2 f m m')) by (exists e; auto).
destruct (map2_2 H3) as [(e0,H4)|(e0,H4)].
rewrite (find_1 H4) in H0; discriminate.
rewrite (find_1 H4) in H1; discriminate.
Qed.

Lemma elements_o : forall m x, 
 find x m = findA (eqb x) (elements m).
Proof.
intros.
assert (forall e, find x m = Some e <-> InA (eq_key_elt (elt:=elt)) (x,e) (elements m)).
 intros; rewrite <- find_mapsto_iff; apply elements_mapsto_iff.
assert (NoDupA (eq_key (elt:=elt)) (elements m)). 
 apply SortA_NoDupA with (lt_key (elt:=elt)); unfold eq_key, lt_key; intuition eauto.
 destruct y; simpl in *.
 apply (E.lt_not_eq H0 H1).
 exact (elements_3 m).
generalize (fun e => @findA_NoDupA _ _ _ E.eq_sym E.eq_trans eq_dec (elements m) x e H0).
unfold eqb.
destruct (find x m); destruct (findA (fun y : E.t => if eq_dec x y then true else false) (elements m)); 
 simpl; auto; intros.
symmetry; rewrite <- H1; rewrite <- H; auto.
symmetry; rewrite <- H1; rewrite <- H; auto.
rewrite H; rewrite H1; auto.
Qed.

Lemma elements_b : forall m x, mem x m = existsb (fun p => eqb x (fst p)) (elements m).
Proof.
intros.
generalize (mem_in_iff m x)(elements_in_iff m x)
 (existsb_exists (fun p => eqb x (fst p)) (elements m)).
destruct (mem x m); destruct (existsb (fun p => eqb x (fst p)) (elements m)); auto; intros.
symmetry; rewrite H1.
destruct H0 as (H0,_).
destruct H0 as (e,He); [ intuition |].
rewrite InA_alt in He.
destruct He as ((y,e'),(Ha1,Ha2)).
compute in Ha1; destruct Ha1; subst e'.
exists (y,e); split; simpl; auto.
unfold eqb; destruct (eq_dec x y); intuition.
rewrite <- H; rewrite H0.
destruct H1 as (H1,_).
destruct H1 as ((y,e),(Ha1,Ha2)); [intuition|].
simpl in Ha2.
unfold eqb in *; destruct (eq_dec x y); auto; try discriminate.
exists e; rewrite InA_alt.
exists (y,e); intuition.
compute; auto.
Qed.

End BoolSpec.

End Facts.