1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * Typeclass-based setoids, tactics and standard instances.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Set Implicit Arguments.
Unset Strict Implicit.
Generalizable Variables A.
Require Import Coq.Program.Program.
Require Import Relation_Definitions.
Require Export Coq.Classes.RelationClasses.
Require Export Coq.Classes.Morphisms.
(** A setoid wraps an equivalence. *)
Class Setoid A := {
equiv : relation A ;
setoid_equiv :> Equivalence equiv }.
(* Too dangerous instance *)
(* Program Instance [ eqa : Equivalence A eqA ] => *)
(* equivalence_setoid : Setoid A := *)
(* equiv := eqA ; setoid_equiv := eqa. *)
(** Shortcuts to make proof search easier. *)
Definition setoid_refl `(sa : Setoid A) : Reflexive equiv.
Proof. typeclasses eauto. Qed.
Definition setoid_sym `(sa : Setoid A) : Symmetric equiv.
Proof. typeclasses eauto. Qed.
Definition setoid_trans `(sa : Setoid A) : Transitive equiv.
Proof. typeclasses eauto. Qed.
Existing Instance setoid_refl.
Existing Instance setoid_sym.
Existing Instance setoid_trans.
(** Standard setoids. *)
(* Program Instance eq_setoid : Setoid A := *)
(* equiv := eq ; setoid_equiv := eq_equivalence. *)
Program Instance iff_setoid : Setoid Prop :=
{ equiv := iff ; setoid_equiv := iff_equivalence }.
(** Overloaded notations for setoid equivalence and inequivalence. Not to be confused with [eq] and [=]. *)
(** Subset objects should be first coerced to their underlying type, but that notation doesn't work in the standard case then. *)
(* Notation " x == y " := (equiv (x :>) (y :>)) (at level 70, no associativity) : type_scope. *)
Notation " x == y " := (equiv x y) (at level 70, no associativity) : type_scope.
Notation " x =/= y " := (complement equiv x y) (at level 70, no associativity) : type_scope.
(** Use the [clsubstitute] command which substitutes an equality in every hypothesis. *)
Ltac clsubst H :=
lazymatch type of H with
?x == ?y => substitute H ; clear H x
end.
Ltac clsubst_nofail :=
match goal with
| [ H : ?x == ?y |- _ ] => clsubst H ; clsubst_nofail
| _ => idtac
end.
(** [subst*] will try its best at substituting every equality in the goal. *)
Tactic Notation "clsubst" "*" := clsubst_nofail.
Lemma nequiv_equiv_trans : forall `{Setoid A} (x y z : A), x =/= y -> y == z -> x =/= z.
Proof with auto.
intros; intro.
assert(z == y) by (symmetry ; auto).
assert(x == y) by (transitivity z ; eauto).
contradiction.
Qed.
Lemma equiv_nequiv_trans : forall `{Setoid A} (x y z : A), x == y -> y =/= z -> x =/= z.
Proof.
intros; intro.
assert(y == x) by (symmetry ; auto).
assert(y == z) by (transitivity x ; eauto).
contradiction.
Qed.
Ltac setoid_simplify_one :=
match goal with
| [ H : (?x == ?x)%type |- _ ] => clear H
| [ H : (?x == ?y)%type |- _ ] => clsubst H
| [ |- (?x =/= ?y)%type ] => let name:=fresh "Hneq" in intro name
end.
Ltac setoid_simplify := repeat setoid_simplify_one.
Ltac setoidify_tac :=
match goal with
| [ s : Setoid ?A, H : ?R ?x ?y |- _ ] => change R with (@equiv A R s) in H
| [ s : Setoid ?A |- context C [ ?R ?x ?y ] ] => change (R x y) with (@equiv A R s x y)
end.
Ltac setoidify := repeat setoidify_tac.
(** Every setoid relation gives rise to a morphism, in fact every partial setoid does. *)
Program Instance setoid_morphism `(sa : Setoid A) : Proper (equiv ++> equiv ++> iff) equiv :=
proper_prf.
Program Instance setoid_partial_app_morphism `(sa : Setoid A) (x : A) : Proper (equiv ++> iff) (equiv x) :=
proper_prf.
(** Partial setoids don't require reflexivity so we can build a partial setoid on the function space. *)
Class PartialSetoid (A : Type) :=
{ pequiv : relation A ; pequiv_prf :> PER pequiv }.
(** Overloaded notation for partial setoid equivalence. *)
Infix "=~=" := pequiv (at level 70, no associativity) : type_scope.
(** Reset the default Program tactic. *)
Obligation Tactic := program_simpl.
|