aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Classes/SetoidAxioms.v
blob: 6b7881c9f24bde5dcf4845215206f7bb54084af1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Extensionality axioms that can be used when reasoning with setoids.
 *
 * Author: Matthieu Sozeau
 * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
 *              91405 Orsay, France *)

(* $Id: FSetAVL_prog.v 616 2007-08-08 12:28:10Z msozeau $ *)

Require Import Coq.Program.Program.

Set Implicit Arguments.
Unset Strict Implicit.

Require Export Coq.Classes.SetoidClass.

(* Application of the extensionality axiom to turn a goal on leibinz equality to 
   a setoid equivalence. *)

Axiom setoideq_eq : forall [ sa : Setoid a ] (x y : a), x == y -> x = y.

(** Application of the extensionality principle for setoids. *)

Ltac setoid_extensionality :=
  match goal with
    [ |- @eq ?A ?X ?Y ] => apply (setoideq_eq (a:=A) (x:=X) (y:=Y))
  end.