blob: dbe7b5c88c520eac7b288a29008acb7a805931a9 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * [Proper] instances for propositional connectives.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Require Import Coq.Classes.Morphisms.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Obligation Tactic := simpl_relation.
(** Standard instances for [not], [iff] and [impl]. *)
(** Logical negation. *)
Program Instance not_impl_morphism :
Proper (impl --> impl) not | 1.
Program Instance not_iff_morphism :
Proper (iff ++> iff) not.
(** Logical conjunction. *)
Program Instance and_impl_morphism :
Proper (impl ==> impl ==> impl) and | 1.
Program Instance and_iff_morphism :
Proper (iff ==> iff ==> iff) and.
(** Logical disjunction. *)
Program Instance or_impl_morphism :
Proper (impl ==> impl ==> impl) or | 1.
Program Instance or_iff_morphism :
Proper (iff ==> iff ==> iff) or.
(** Logical implication [impl] is a morphism for logical equivalence. *)
Program Instance iff_iff_iff_impl_morphism : Proper (iff ==> iff ==> iff) impl.
(** Morphisms for quantifiers *)
Program Instance ex_iff_morphism {A : Type} : Proper (pointwise_relation A iff ==> iff) (@ex A).
Next Obligation.
Proof.
unfold pointwise_relation in H.
split ; intros.
destruct H0 as [x1 H1].
exists x1. rewrite H in H1. assumption.
destruct H0 as [x1 H1].
exists x1. rewrite H. assumption.
Qed.
Program Instance ex_impl_morphism {A : Type} :
Proper (pointwise_relation A impl ==> impl) (@ex A) | 1.
Next Obligation.
Proof.
unfold pointwise_relation in H.
exists H0. apply H. assumption.
Qed.
Program Instance ex_inverse_impl_morphism {A : Type} :
Proper (pointwise_relation A (inverse impl) ==> inverse impl) (@ex A) | 1.
Next Obligation.
Proof.
unfold pointwise_relation in H.
exists H0. apply H. assumption.
Qed.
Program Instance all_iff_morphism {A : Type} :
Proper (pointwise_relation A iff ==> iff) (@all A).
Next Obligation.
Proof.
unfold pointwise_relation, all in *.
intuition ; specialize (H x0) ; intuition.
Qed.
Program Instance all_impl_morphism {A : Type} :
Proper (pointwise_relation A impl ==> impl) (@all A) | 1.
Next Obligation.
Proof.
unfold pointwise_relation, all in *.
intuition ; specialize (H x0) ; intuition.
Qed.
Program Instance all_inverse_impl_morphism {A : Type} :
Proper (pointwise_relation A (inverse impl) ==> inverse impl) (@all A) | 1.
Next Obligation.
Proof.
unfold pointwise_relation, all in *.
intuition ; specialize (H x0) ; intuition.
Qed.
|