aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Classes/Morphisms_Prop.v
blob: dbe7b5c88c520eac7b288a29008acb7a805931a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** * [Proper] instances for propositional connectives.

   Author: Matthieu Sozeau
   Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)

Require Import Coq.Classes.Morphisms.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.

Obligation Tactic := simpl_relation.

(** Standard instances for [not], [iff] and [impl]. *)

(** Logical negation. *)

Program Instance not_impl_morphism :
  Proper (impl --> impl) not | 1.

Program Instance not_iff_morphism :
  Proper (iff ++> iff) not.

(** Logical conjunction. *)

Program Instance and_impl_morphism :
  Proper (impl ==> impl ==> impl) and | 1.

Program Instance and_iff_morphism :
  Proper (iff ==> iff ==> iff) and.

(** Logical disjunction. *)

Program Instance or_impl_morphism :
  Proper (impl ==> impl ==> impl) or | 1.

Program Instance or_iff_morphism :
  Proper (iff ==> iff ==> iff) or.

(** Logical implication [impl] is a morphism for logical equivalence. *)

Program Instance iff_iff_iff_impl_morphism : Proper (iff ==> iff ==> iff) impl.

(** Morphisms for quantifiers *)

Program Instance ex_iff_morphism {A : Type} : Proper (pointwise_relation A iff ==> iff) (@ex A).

  Next Obligation.
  Proof.
    unfold pointwise_relation in H.
    split ; intros.
    destruct H0 as [x1 H1].
    exists x1. rewrite H in H1. assumption.

    destruct H0 as [x1 H1].
    exists x1. rewrite H. assumption.
  Qed.

Program Instance ex_impl_morphism {A : Type} :
  Proper (pointwise_relation A impl ==> impl) (@ex A) | 1.

  Next Obligation.
  Proof.
    unfold pointwise_relation in H.
    exists H0. apply H. assumption.
  Qed.

Program Instance ex_inverse_impl_morphism {A : Type} :
  Proper (pointwise_relation A (inverse impl) ==> inverse impl) (@ex A) | 1.

  Next Obligation.
  Proof.
    unfold pointwise_relation in H.
    exists H0. apply H. assumption.
  Qed.

Program Instance all_iff_morphism {A : Type} :
  Proper (pointwise_relation A iff ==> iff) (@all A).

  Next Obligation.
  Proof.
    unfold pointwise_relation, all in *.
    intuition ; specialize (H x0) ; intuition.
  Qed.

Program Instance all_impl_morphism {A : Type} :
  Proper (pointwise_relation A impl ==> impl) (@all A) | 1.

  Next Obligation.
  Proof.
    unfold pointwise_relation, all in *.
    intuition ; specialize (H x0) ; intuition.
  Qed.

Program Instance all_inverse_impl_morphism {A : Type} :
  Proper (pointwise_relation A (inverse impl) ==> inverse impl) (@all A) | 1.

  Next Obligation.
  Proof.
    unfold pointwise_relation, all in *.
    intuition ; specialize (H x0) ; intuition.
  Qed.