blob: 096c96e5d280df2717b6ed0750b7a12b95bb0781 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * [Proper] instances for propositional connectives.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Require Import Coq.Classes.Morphisms.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Local Obligation Tactic := try solve [simpl_relation | firstorder auto].
(** Standard instances for [not], [iff] and [impl]. *)
(** Logical negation. *)
Program Instance not_impl_morphism :
Proper (impl --> impl) not | 1.
Program Instance not_iff_morphism :
Proper (iff ++> iff) not.
(** Logical conjunction. *)
Program Instance and_impl_morphism :
Proper (impl ==> impl ==> impl) and | 1.
Program Instance and_iff_morphism :
Proper (iff ==> iff ==> iff) and.
(** Logical disjunction. *)
Program Instance or_impl_morphism :
Proper (impl ==> impl ==> impl) or | 1.
Program Instance or_iff_morphism :
Proper (iff ==> iff ==> iff) or.
(** Logical implication [impl] is a morphism for logical equivalence. *)
Program Instance iff_iff_iff_impl_morphism : Proper (iff ==> iff ==> iff) impl.
(** Morphisms for quantifiers *)
Program Instance ex_iff_morphism {A : Type} : Proper (pointwise_relation A iff ==> iff) (@ex A).
Program Instance ex_impl_morphism {A : Type} :
Proper (pointwise_relation A impl ==> impl) (@ex A) | 1.
Program Instance ex_flip_impl_morphism {A : Type} :
Proper (pointwise_relation A (flip impl) ==> flip impl) (@ex A) | 1.
Program Instance all_iff_morphism {A : Type} :
Proper (pointwise_relation A iff ==> iff) (@all A).
Program Instance all_impl_morphism {A : Type} :
Proper (pointwise_relation A impl ==> impl) (@all A) | 1.
Program Instance all_flip_impl_morphism {A : Type} :
Proper (pointwise_relation A (flip impl) ==> flip impl) (@all A) | 1.
(** Equivalent points are simultaneously accessible or not *)
Instance Acc_pt_morphism {A:Type}(E R : A->A->Prop)
`(Equivalence _ E) `(Proper _ (E==>E==>iff) R) :
Proper (E==>iff) (Acc R).
Proof.
apply proper_sym_impl_iff; auto with *.
intros x y EQ WF. apply Acc_intro; intros z Hz.
rewrite <- EQ in Hz. now apply Acc_inv with x.
Qed.
(** Equivalent relations have the same accessible points *)
Instance Acc_rel_morphism {A:Type} :
Proper (relation_equivalence ==> Logic.eq ==> iff) (@Acc A).
Proof.
apply proper_sym_impl_iff_2. red; now symmetry. red; now symmetry.
intros R R' EQ a a' Ha WF. subst a'.
induction WF as [x _ WF']. constructor.
intros y Ryx. now apply WF', EQ.
Qed.
(** Equivalent relations are simultaneously well-founded or not *)
Instance well_founded_morphism {A : Type} :
Proper (relation_equivalence ==> iff) (@well_founded A).
Proof.
unfold well_founded. solve_proper.
Qed.
|