aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Classes/Equivalence.v
blob: dd9cfbca5e839476647107eac3ab462158566b58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Typeclass-based setoids, tactics and standard instances.
 
   Author: Matthieu Sozeau
   Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
   91405 Orsay, France *)

(* $Id: FSetAVL_prog.v 616 2007-08-08 12:28:10Z msozeau $ *)

Require Export Coq.Program.Basics.
Require Import Coq.Program.Tactics.

Require Import Coq.Classes.Init.
Require Export Coq.Classes.RelationClasses.
Require Export Coq.Classes.Morphisms.
Require Export Coq.Classes.SetoidTactics.

Set Implicit Arguments.
Unset Strict Implicit.

(** Every [Equivalence] gives a default relation, if no other is given (lowest priority). *)

Instance [ ! Equivalence A R ] => 
  equivalence_default : DefaultRelation A R | 4.

Definition equiv [ Equivalence A R ] : relation A := R.

(** Shortcuts to make proof search possible (unification won't unfold equiv). *)

Program Instance [ sa : ! Equivalence A ] => equiv_refl : reflexive equiv.

Program Instance [ sa : ! Equivalence A ] => equiv_sym : symmetric equiv.

  Next Obligation.
  Proof.
    symmetry ; auto.
  Qed.

Program Instance [ sa : ! Equivalence A ] => equiv_trans : transitive equiv.

  Next Obligation.
  Proof.
    transitivity y ; auto.
  Qed.

(** Overloaded notations for setoid equivalence and inequivalence. Not to be confused with [eq] and [=]. *)

(** Subset objects should be first coerced to their underlying type, but that notation doesn't work in the standard case then. *)
(* Notation " x == y " := (equiv (x :>) (y :>)) (at level 70, no associativity) : type_scope. *)

Notation " x === y " := (equiv x y) (at level 70, no associativity) : equiv_scope.

Notation " x =/= y " := (complement equiv x y) (at level 70, no associativity) : equiv_scope.
  
Open Local Scope equiv_scope.

(** Use the [clsubstitute] command which substitutes an equality in every hypothesis. *)

Ltac clsubst H := 
  match type of H with
    ?x === ?y => clsubstitute H ; clear H x
  end.

Ltac clsubst_nofail :=
  match goal with
    | [ H : ?x === ?y |- _ ] => clsubst H ; clsubst_nofail
    | _ => idtac
  end.
  
(** [subst*] will try its best at substituting every equality in the goal. *)

Tactic Notation "clsubst" "*" := clsubst_nofail.

Lemma nequiv_equiv_trans : forall [ ! Equivalence A ] (x y z : A), x =/= y -> y === z -> x =/= z.
Proof with auto.
  intros; intro.
  assert(z === y) by (symmetry ; auto).
  assert(x === y) by (transitivity z ; auto).
  contradiction.
Qed.

Lemma equiv_nequiv_trans : forall [ ! Equivalence A ] (x y z : A), x === y -> y =/= z -> x =/= z.
Proof.
  intros; intro. 
  assert(y === x) by (symmetry ; auto).
  assert(y === z) by (transitivity x ; auto).
  contradiction.
Qed.

Ltac equiv_simplify_one :=
  match goal with
    | [ H : (?x === ?x)%type |- _ ] => clear H
    | [ H : (?x === ?y)%type |- _ ] => clsubst H
    | [ |- (?x =/= ?y)%type ] => let name:=fresh "Hneq" in intro name
  end.

Ltac equiv_simplify := repeat equiv_simplify_one.

Ltac equivify_tac :=
  match goal with
    | [ s : Equivalence ?A, H : ?R ?x ?y |- _ ] => change R with (@equiv A R s) in H
    | [ s : Equivalence ?A |- context C [ ?R ?x ?y ] ] => change (R x y) with (@equiv A R s x y)
  end.

Ltac equivify := repeat equivify_tac.

(** Every equivalence relation gives rise to a morphism, as it is transitive and symmetric. *)

Instance [ sa : ! Equivalence ] => equiv_morphism : Morphism (equiv ++> equiv ++> iff) equiv :=
  respect := respect.

(** The partial application too as it is reflexive. *)

Instance [ sa : ! Equivalence A ] (x : A) => 
  equiv_partial_app_morphism : Morphism (equiv ++> iff) (equiv x) :=
  respect := respect. 

Definition type_eq : relation Type :=
  fun x y => x = y.

Program Instance type_equivalence : Equivalence Type type_eq.

  Solve Obligations using constructor ; unfold type_eq ; program_simpl.

Ltac morphism_tac := try red ; unfold arrow ; intros ; program_simpl ; try tauto.

Ltac obligations_tactic ::= morphism_tac.

(** These are morphisms used to rewrite at the top level of a proof, 
   using [iff_impl_id_morphism] if the proof is in [Prop] and
   [eq_arrow_id_morphism] if it is in Type. *)

Program Instance iff_impl_id_morphism : 
  Morphism (iff ++> impl) id.

(* Program Instance eq_arrow_id_morphism : ? Morphism (eq +++> arrow) id. *)

(** Partial equivs don't require reflexivity so we can build a partial equiv on the function space. *)

Class PartialEquivalence (carrier : Type) (pequiv : relation carrier) :=
  pequiv_prf :> PER carrier pequiv.

Definition pequiv [ PartialEquivalence A R ] : relation A := R.

(** Overloaded notation for partial equiv equivalence. *)

Notation " x =~= y " := (pequiv x y) (at level 70, no associativity) : type_scope.

(** Reset the default Program tactic. *)

Ltac obligations_tactic ::= program_simpl.