1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * Typeclass-based setoids. Definitions on [Equivalence].
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Import Coq.Classes.Init.
Require Import Relation_Definitions.
Require Export Coq.Classes.CRelationClasses.
Require Import Coq.Classes.CMorphisms.
Set Implicit Arguments.
Unset Strict Implicit.
Generalizable Variables A R eqA B S eqB.
Local Obligation Tactic := try solve [simpl_crelation].
Local Open Scope signature_scope.
Definition equiv `{Equivalence A R} : crelation A := R.
(** Overloaded notations for setoid equivalence and inequivalence.
Not to be confused with [eq] and [=]. *)
Notation " x === y " := (equiv x y) (at level 70, no associativity) : equiv_scope.
Notation " x =/= y " := (complement equiv x y) (at level 70, no associativity) : equiv_scope.
Local Open Scope equiv_scope.
(** Overloading for [PER]. *)
Definition pequiv `{PER A R} : crelation A := R.
(** Overloaded notation for partial equivalence. *)
Infix "=~=" := pequiv (at level 70, no associativity) : equiv_scope.
(** Shortcuts to make proof search easier. *)
Program Instance equiv_reflexive `(sa : Equivalence A) : Reflexive equiv.
Program Instance equiv_symmetric `(sa : Equivalence A) : Symmetric equiv.
Program Instance equiv_transitive `(sa : Equivalence A) : Transitive equiv.
Next Obligation.
Proof. intros A R sa x y z Hxy Hyz.
now transitivity y.
Qed.
(** Use the [substitute] command which substitutes an equivalence in every hypothesis. *)
Ltac setoid_subst H :=
match type of H with
?x === ?y => substitute H ; clear H x
end.
Ltac setoid_subst_nofail :=
match goal with
| [ H : ?x === ?y |- _ ] => setoid_subst H ; setoid_subst_nofail
| _ => idtac
end.
(** [subst*] will try its best at substituting every equality in the goal. *)
Tactic Notation "subst" "*" := subst_no_fail ; setoid_subst_nofail.
(** Simplify the goal w.r.t. equivalence. *)
Ltac equiv_simplify_one :=
match goal with
| [ H : ?x === ?x |- _ ] => clear H
| [ H : ?x === ?y |- _ ] => setoid_subst H
| [ |- ?x =/= ?y ] => let name:=fresh "Hneq" in intro name
| [ |- ~ ?x === ?y ] => let name:=fresh "Hneq" in intro name
end.
Ltac equiv_simplify := repeat equiv_simplify_one.
(** "reify" relations which are equivalences to applications of the overloaded [equiv] method
for easy recognition in tactics. *)
Ltac equivify_tac :=
match goal with
| [ s : Equivalence ?A ?R, H : ?R ?x ?y |- _ ] => change R with (@equiv A R s) in H
| [ s : Equivalence ?A ?R |- context C [ ?R ?x ?y ] ] => change (R x y) with (@equiv A R s x y)
end.
Ltac equivify := repeat equivify_tac.
Section Respecting.
(** Here we build an equivalence instance for functions which relates respectful ones only,
we do not export it. *)
Definition respecting `(eqa : Equivalence A (R : crelation A),
eqb : Equivalence B (R' : crelation B)) : Type :=
{ morph : A -> B & respectful R R' morph morph }.
Program Instance respecting_equiv `(eqa : Equivalence A R, eqb : Equivalence B R') :
Equivalence (fun (f g : respecting eqa eqb) =>
forall (x y : A), R x y -> R' (projT1 f x) (projT1 g y)).
Solve Obligations with unfold respecting in * ; simpl_crelation ; program_simpl.
Next Obligation.
Proof.
intros. intros f g h H H' x y Rxy.
unfold respecting in *. program_simpl. transitivity (g y); auto. firstorder.
Qed.
End Respecting.
(** The default equivalence on function spaces, with higher-priority than [eq]. *)
Instance pointwise_reflexive {A} `(reflb : Reflexive B eqB) :
Reflexive (pointwise_relation A eqB) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `(symb : Symmetric B eqB) :
Symmetric (pointwise_relation A eqB) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `(transb : Transitive B eqB) :
Transitive (pointwise_relation A eqB) | 9.
Proof. firstorder. Qed.
Instance pointwise_equivalence {A} `(eqb : Equivalence B eqB) :
Equivalence (pointwise_relation A eqB) | 9.
Proof. split; apply _. Qed.
|