aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Bool/Zerob.v
blob: e8798d0d903774f5f84744b62f68540c434d5d4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Arith.
Require Import Bool.

Local Open Scope nat_scope.

Definition zerob (n:nat) : bool :=
  match n with
    | O => true
    | S _ => false
  end.

Lemma zerob_true_intro : forall n:nat, n = 0 -> zerob n = true.
Proof.
  destruct n; [ trivial with bool | inversion 1 ].
Qed.
Hint Resolve zerob_true_intro: bool.

Lemma zerob_true_elim : forall n:nat, zerob n = true -> n = 0.
Proof.
  destruct n; [ trivial with bool | inversion 1 ].
Qed.

Lemma zerob_false_intro : forall n:nat, n <> 0 -> zerob n = false.
Proof.
  destruct n; [ destruct 1; auto with bool | trivial with bool ].
Qed.
Hint Resolve zerob_false_intro: bool.

Lemma zerob_false_elim : forall n:nat, zerob n = false -> n <> 0.
Proof.
  destruct n; [ inversion 1 | auto with bool ].
Qed.