blob: e8798d0d903774f5f84744b62f68540c434d5d4e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Arith.
Require Import Bool.
Local Open Scope nat_scope.
Definition zerob (n:nat) : bool :=
match n with
| O => true
| S _ => false
end.
Lemma zerob_true_intro : forall n:nat, n = 0 -> zerob n = true.
Proof.
destruct n; [ trivial with bool | inversion 1 ].
Qed.
Hint Resolve zerob_true_intro: bool.
Lemma zerob_true_elim : forall n:nat, zerob n = true -> n = 0.
Proof.
destruct n; [ trivial with bool | inversion 1 ].
Qed.
Lemma zerob_false_intro : forall n:nat, n <> 0 -> zerob n = false.
Proof.
destruct n; [ destruct 1; auto with bool | trivial with bool ].
Qed.
Hint Resolve zerob_false_intro: bool.
Lemma zerob_false_elim : forall n:nat, zerob n = false -> n <> 0.
Proof.
destruct n; [ inversion 1 | auto with bool ].
Qed.
|