blob: 7fa518d661d69756c42969b0caae33452afe6137 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Set Implicit Arguments.
Definition ifdec (A B:Prop) (C:Set) (H:{A} + {B}) (x y:C) : C :=
if H then x else y.
Theorem ifdec_left :
forall (A B:Prop) (C:Set) (H:{A} + {B}),
~ B -> forall x y:C, ifdec H x y = x.
intros; case H; auto.
intro; absurd B; trivial.
Qed.
Theorem ifdec_right :
forall (A B:Prop) (C:Set) (H:{A} + {B}),
~ A -> forall x y:C, ifdec H x y = y.
intros; case H; auto.
intro; absurd A; trivial.
Qed.
Unset Implicit Arguments.
|