aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Bool/DecBool.v
blob: a713c0409a882b77a939fe27324b59e7b2d63171 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(* $Id$ *)

Implicit Arguments On.

Definition ifdec : (A,B:Prop)(C:Set)({A}+{B})->C->C->C
   := [A,B,C,H,x,y]if H then [_]x else [_]y.


Theorem ifdec_left : (A,B:Prop)(C:Set)(H:{A}+{B})~B->(x,y:C)(ifdec H x y)=x.
Intros; Case H; Auto.
Intro; Absurd B; Trivial.
Save.

Theorem ifdec_right : (A,B:Prop)(C:Set)(H:{A}+{B})~A->(x,y:C)(ifdec H x y)=y.
Intros; Case H; Auto.
Intro; Absurd A; Trivial.
Save.

Implicit Arguments Off.