1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Properties of addition. [add] is defined in [Init/Peano.v] as:
<<
Fixpoint plus (n m:nat) : nat :=
match n with
| O => m
| S p => S (p + m)
end
where "n + m" := (plus n m) : nat_scope.
>>
*)
Require Import Le.
Require Import Lt.
Local Open Scope nat_scope.
Implicit Types m n p q : nat.
(** * Zero is neutral
Deprecated : Already in Init/Peano.v *)
Notation plus_0_l := plus_O_n (only parsing).
Definition plus_0_r n := eq_sym (plus_n_O n).
(** * Commutativity *)
Lemma plus_comm : forall n m, n + m = m + n.
Proof.
intros n m; elim n; simpl; auto with arith.
intros y H; elim (plus_n_Sm m y); auto with arith.
Qed.
Hint Immediate plus_comm: arith v62.
(** * Associativity *)
Definition plus_Snm_nSm : forall n m, S n + m = n + S m:=
plus_n_Sm.
Lemma plus_assoc : forall n m p, n + (m + p) = n + m + p.
Proof.
intros n m p; elim n; simpl; auto with arith.
Qed.
Hint Resolve plus_assoc: arith v62.
Lemma plus_permute : forall n m p, n + (m + p) = m + (n + p).
Proof.
intros; rewrite (plus_assoc m n p); rewrite (plus_comm m n); auto with arith.
Qed.
Lemma plus_assoc_reverse : forall n m p, n + m + p = n + (m + p).
Proof.
auto with arith.
Qed.
Hint Resolve plus_assoc_reverse: arith v62.
(** * Simplification *)
Lemma plus_reg_l : forall n m p, p + n = p + m -> n = m.
Proof.
intros m p n; induction n; simpl; auto with arith.
Qed.
Lemma plus_le_reg_l : forall n m p, p + n <= p + m -> n <= m.
Proof.
induction p; simpl; auto with arith.
Qed.
Lemma plus_lt_reg_l : forall n m p, p + n < p + m -> n < m.
Proof.
induction p; simpl; auto with arith.
Qed.
(** * Compatibility with order *)
Lemma plus_le_compat_l : forall n m p, n <= m -> p + n <= p + m.
Proof.
induction p; simpl; auto with arith.
Qed.
Hint Resolve plus_le_compat_l: arith v62.
Lemma plus_le_compat_r : forall n m p, n <= m -> n + p <= m + p.
Proof.
induction 1; simpl; auto with arith.
Qed.
Hint Resolve plus_le_compat_r: arith v62.
Lemma le_plus_l : forall n m, n <= n + m.
Proof.
induction n; simpl; auto with arith.
Qed.
Hint Resolve le_plus_l: arith v62.
Lemma le_plus_r : forall n m, m <= n + m.
Proof.
intros n m; elim n; simpl; auto with arith.
Qed.
Hint Resolve le_plus_r: arith v62.
Theorem le_plus_trans : forall n m p, n <= m -> n <= m + p.
Proof.
intros; apply le_trans with (m := m); auto with arith.
Qed.
Hint Resolve le_plus_trans: arith v62.
Theorem lt_plus_trans : forall n m p, n < m -> n < m + p.
Proof.
intros; apply lt_le_trans with (m := m); auto with arith.
Qed.
Hint Immediate lt_plus_trans: arith v62.
Lemma plus_lt_compat_l : forall n m p, n < m -> p + n < p + m.
Proof.
induction p; simpl; auto with arith.
Qed.
Hint Resolve plus_lt_compat_l: arith v62.
Lemma plus_lt_compat_r : forall n m p, n < m -> n + p < m + p.
Proof.
intros n m p H; rewrite (plus_comm n p); rewrite (plus_comm m p).
elim p; auto with arith.
Qed.
Hint Resolve plus_lt_compat_r: arith v62.
Lemma plus_le_compat : forall n m p q, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q H H0.
elim H; simpl; auto with arith.
Qed.
Lemma plus_le_lt_compat : forall n m p q, n <= m -> p < q -> n + p < m + q.
Proof.
unfold lt. intros. change (S n + p <= m + q). rewrite plus_Snm_nSm.
apply plus_le_compat; assumption.
Qed.
Lemma plus_lt_le_compat : forall n m p q, n < m -> p <= q -> n + p < m + q.
Proof.
unfold lt. intros. change (S n + p <= m + q). apply plus_le_compat; assumption.
Qed.
Lemma plus_lt_compat : forall n m p q, n < m -> p < q -> n + p < m + q.
Proof.
intros. apply plus_lt_le_compat. assumption.
apply lt_le_weak. assumption.
Qed.
(** * Inversion lemmas *)
Lemma plus_is_O : forall n m, n + m = 0 -> n = 0 /\ m = 0.
Proof.
intro m; destruct m as [| n]; auto.
intros. discriminate H.
Qed.
Definition plus_is_one :
forall m n, m + n = 1 -> {m = 0 /\ n = 1} + {m = 1 /\ n = 0}.
Proof.
intro m; destruct m as [| n]; auto.
destruct n; auto.
intros.
simpl in H. discriminate H.
Defined.
(** * Derived properties *)
Lemma plus_permute_2_in_4 : forall n m p q, n + m + (p + q) = n + p + (m + q).
Proof.
intros m n p q.
rewrite <- (plus_assoc m n (p + q)). rewrite (plus_assoc n p q).
rewrite (plus_comm n p). rewrite <- (plus_assoc p n q). apply plus_assoc.
Qed.
(** * Tail-recursive plus *)
(** [tail_plus] is an alternative definition for [plus] which is
tail-recursive, whereas [plus] is not. This can be useful
when extracting programs. *)
Fixpoint tail_plus n m : nat :=
match n with
| O => m
| S n => tail_plus n (S m)
end.
Lemma plus_tail_plus : forall n m, n + m = tail_plus n m.
induction n as [| n IHn]; simpl; auto.
intro m; rewrite <- IHn; simpl; auto.
Qed.
(** * Discrimination *)
Lemma succ_plus_discr : forall n m, n <> S (plus m n).
Proof.
intros n m; induction n as [|n IHn].
discriminate.
intro H; apply IHn; apply eq_add_S; rewrite H; rewrite <- plus_n_Sm;
reflexivity.
Qed.
Lemma n_SSn : forall n, n <> S (S n).
Proof.
intro n; exact (succ_plus_discr n 1).
Qed.
Lemma n_SSSn : forall n, n <> S (S (S n)).
Proof.
intro n; exact (succ_plus_discr n 2).
Qed.
Lemma n_SSSSn : forall n, n <> S (S (S (S n))).
Proof.
intro n; exact (succ_plus_discr n 3).
Qed.
|