aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Arith/Peano_dec.v
blob: 96a8523f9f5847e949907851bc7cae5bb7071761 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i $Id$ i*)

Require Decidable.

V7only [Import nat_scope.].
Open Local Scope nat_scope.

Implicit Variables Type m,n,x,y:nat.

Theorem O_or_S : (n:nat)({m:nat|(S m)=n})+{O=n}.
Proof.
NewInduction n.
Auto.
Left; Exists n; Auto.
Defined.

Theorem eq_nat_dec : (n,m:nat){n=m}+{~(n=m)}.
Proof.
NewInduction n; NewInduction m; Auto.
Elim (IHn m); Auto.
Defined.

Hints Resolve O_or_S eq_nat_dec : arith.

Theorem dec_eq_nat:(x,y:nat)(decidable (x=y)).
Intros x y; Unfold decidable; Elim (eq_nat_dec x y); Auto with arith.
Defined.