1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
Require Import NAxioms NProperties OrdersFacts.
(** Implementation of [NAxiomsSig] by [nat] *)
Module Nat
<: NAxiomsSig
<: UsualDecidableTypeFull
<: OrderedTypeFull
<: TotalOrder.
(** Operations over [nat] are defined in a separate module *)
Include Coq.Init.Nat.
(** When including property functors, inline t eq zero one two lt le succ *)
Set Inline Level 50.
(** All operations are well-defined (trivial here since eq is Leibniz) *)
Definition eq_equiv : Equivalence (@eq nat) := eq_equivalence.
Local Obligation Tactic := simpl_relation.
Program Instance succ_wd : Proper (eq==>eq) S.
Program Instance pred_wd : Proper (eq==>eq) pred.
Program Instance add_wd : Proper (eq==>eq==>eq) plus.
Program Instance sub_wd : Proper (eq==>eq==>eq) minus.
Program Instance mul_wd : Proper (eq==>eq==>eq) mult.
Program Instance pow_wd : Proper (eq==>eq==>eq) pow.
Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
Program Instance lt_wd : Proper (eq==>eq==>iff) lt.
Program Instance testbit_wd : Proper (eq==>eq==>eq) testbit.
(** Bi-directional induction. *)
Theorem bi_induction :
forall A : nat -> Prop, Proper (eq==>iff) A ->
A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n.
Proof.
intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS.
Qed.
(** Recursion fonction *)
Definition recursion {A} : A -> (nat -> A -> A) -> nat -> A :=
nat_rect (fun _ => A).
Instance recursion_wd {A} (Aeq : relation A) :
Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion.
Proof.
intros a a' Ha f f' Hf n n' Hn. subst n'.
induction n; simpl; auto. apply Hf; auto.
Qed.
Theorem recursion_0 :
forall {A} (a : A) (f : nat -> A -> A), recursion a f 0 = a.
Proof.
reflexivity.
Qed.
Theorem recursion_succ :
forall {A} (Aeq : relation A) (a : A) (f : nat -> A -> A),
Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
Proof.
unfold Proper, respectful in *; induction n; simpl; auto.
Qed.
(** ** Remaining constants not defined in Coq.Init.Nat *)
(** NB: Aliasing [le] is mandatory, since only a Definition can implement
an interface Parameter... *)
Definition eq := @Logic.eq nat.
Definition le := Peano.le.
Definition lt := Peano.lt.
(** ** Basic specifications : pred add sub mul *)
Lemma pred_succ n : pred (S n) = n.
Proof.
reflexivity.
Qed.
Lemma pred_0 : pred 0 = 0.
Proof.
reflexivity.
Qed.
Lemma one_succ : 1 = S 0.
Proof.
reflexivity.
Qed.
Lemma two_succ : 2 = S 1.
Proof.
reflexivity.
Qed.
Lemma add_0_l n : 0 + n = n.
Proof.
reflexivity.
Qed.
Lemma add_succ_l n m : (S n) + m = S (n + m).
Proof.
reflexivity.
Qed.
Lemma sub_0_r n : n - 0 = n.
Proof.
now destruct n.
Qed.
Lemma sub_succ_r n m : n - (S m) = pred (n - m).
Proof.
revert m. induction n; destruct m; simpl; auto. apply sub_0_r.
Qed.
Lemma mul_0_l n : 0 * n = 0.
Proof.
reflexivity.
Qed.
Lemma mul_succ_l n m : S n * m = n * m + m.
Proof.
assert (succ_r : forall x y, x+S y = S(x+y)) by now induction x.
assert (comm : forall x y, x+y = y+x).
{ induction x; simpl; auto. intros; rewrite succ_r; now f_equal. }
now rewrite comm.
Qed.
Lemma lt_succ_r n m : n < S m <-> n <= m.
Proof.
split. apply Peano.le_S_n. induction 1; auto.
Qed.
(** ** Boolean comparisons *)
Lemma eqb_eq n m : eqb n m = true <-> n = m.
Proof.
revert m.
induction n; destruct m; simpl; rewrite ?IHn; split; try easy.
- now intros ->.
- now injection 1.
Qed.
Lemma leb_le n m : (n <=? m) = true <-> n <= m.
Proof.
revert m.
induction n; destruct m; simpl.
- now split.
- split; trivial. intros; apply Peano.le_0_n.
- now split.
- rewrite IHn; split.
+ apply Peano.le_n_S.
+ apply Peano.le_S_n.
Qed.
Lemma ltb_lt n m : (n <? m) = true <-> n < m.
Proof.
apply leb_le.
Qed.
(** ** Decidability of equality over [nat]. *)
Lemma eq_dec : forall n m : nat, {n = m} + {n <> m}.
Proof.
induction n; destruct m.
- now left.
- now right.
- now right.
- destruct (IHn m); [left|right]; auto.
Defined.
(** ** Ternary comparison *)
(** With [nat], it would be easier to prove first [compare_spec],
then the properties below. But then we wouldn't be able to
benefit from functor [BoolOrderFacts] *)
Lemma compare_eq_iff n m : (n ?= m) = Eq <-> n = m.
Proof.
revert m; induction n; destruct m; simpl; rewrite ?IHn; split; auto; easy.
Qed.
Lemma compare_lt_iff n m : (n ?= m) = Lt <-> n < m.
Proof.
revert m; induction n; destruct m; simpl; rewrite ?IHn; split; try easy.
- intros _. apply Peano.le_n_S, Peano.le_0_n.
- apply Peano.le_n_S.
- apply Peano.le_S_n.
Qed.
Lemma compare_le_iff n m : (n ?= m) <> Gt <-> n <= m.
Proof.
revert m; induction n; destruct m; simpl; rewrite ?IHn.
- now split.
- split; intros. apply Peano.le_0_n. easy.
- split. now destruct 1. inversion 1.
- split; intros. now apply Peano.le_n_S. now apply Peano.le_S_n.
Qed.
Lemma compare_antisym n m : (m ?= n) = CompOpp (n ?= m).
Proof.
revert m; induction n; destruct m; simpl; trivial.
Qed.
Lemma compare_succ n m : (S n ?= S m) = (n ?= m).
Proof.
reflexivity.
Qed.
(* BUG: Ajout d'un cas * après preuve finie (deuxième niveau +++*** ) :
* ---> Anomaly: Uncaught exception Proofview.IndexOutOfRange(_). Please report. *)
(** ** Minimum, maximum *)
Lemma max_l : forall n m, m <= n -> max n m = n.
Proof.
exact Peano.max_l.
Qed.
Lemma max_r : forall n m, n <= m -> max n m = m.
Proof.
exact Peano.max_r.
Qed.
Lemma min_l : forall n m, n <= m -> min n m = n.
Proof.
exact Peano.min_l.
Qed.
Lemma min_r : forall n m, m <= n -> min n m = m.
Proof.
exact Peano.min_r.
Qed.
(** Some more advanced properties of comparison and orders,
including [compare_spec] and [lt_irrefl] and [lt_eq_cases]. *)
Include BoolOrderFacts.
(** We can now derive all properties of basic functions and orders,
and use these properties for proving the specs of more advanced
functions. *)
Include NBasicProp <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.
(** ** Power *)
Lemma pow_neg_r a b : b<0 -> a^b = 0. inversion 1. Qed.
Lemma pow_0_r a : a^0 = 1.
Proof. reflexivity. Qed.
Lemma pow_succ_r a b : 0<=b -> a^(S b) = a * a^b.
Proof. reflexivity. Qed.
(** ** Square *)
Lemma square_spec n : square n = n * n.
Proof. reflexivity. Qed.
(** ** Parity *)
Definition Even n := exists m, n = 2*m.
Definition Odd n := exists m, n = 2*m+1.
Module Private_Parity.
Lemma Even_1 : ~ Even 1.
Proof.
intros ([|], H); try discriminate.
simpl in H. now rewrite <- plus_n_Sm in H.
Qed.
Lemma Even_2 n : Even n <-> Even (S (S n)).
Proof.
split; intros (m,H).
- exists (S m). rewrite H. simpl. now rewrite plus_n_Sm.
- destruct m; try discriminate.
exists m. simpl in H. rewrite <- plus_n_Sm in H. now inversion H.
Qed.
Lemma Odd_0 : ~ Odd 0.
Proof.
now intros ([|], H).
Qed.
Lemma Odd_2 n : Odd n <-> Odd (S (S n)).
Proof.
split; intros (m,H).
- exists (S m). rewrite H. simpl. now rewrite <- (plus_n_Sm m).
- destruct m; try discriminate.
exists m. simpl in H. rewrite <- plus_n_Sm in H. inversion H.
simpl. now rewrite <- !plus_n_Sm, <- !plus_n_O.
Qed.
End Private_Parity.
Import Private_Parity.
Lemma even_spec : forall n, even n = true <-> Even n.
Proof.
fix 1.
destruct n as [|[|n]]; simpl.
- split; [ now exists 0 | trivial ].
- split; [ discriminate | intro H; elim (Even_1 H) ].
- rewrite even_spec. apply Even_2.
Qed.
Lemma odd_spec : forall n, odd n = true <-> Odd n.
Proof.
unfold odd.
fix 1.
destruct n as [|[|n]]; simpl.
- split; [ discriminate | intro H; elim (Odd_0 H) ].
- split; [ now exists 0 | trivial ].
- rewrite odd_spec. apply Odd_2.
Qed.
(** ** Division *)
Lemma divmod_spec : forall x y q u, u <= y ->
let (q',u') := divmod x y q u in
x + (S y)*q + (y-u) = (S y)*q' + (y-u') /\ u' <= y.
Proof.
induction x.
- simpl; intuition.
- intros y q u H. destruct u; simpl divmod.
+ generalize (IHx y (S q) y (le_n y)). destruct divmod as (q',u').
intros (EQ,LE); split; trivial.
rewrite <- EQ, sub_0_r, sub_diag, add_0_r.
now rewrite !add_succ_l, <- add_succ_r, <- add_assoc, mul_succ_r.
+ assert (H' : u <= y).
{ apply le_trans with (S u); trivial. do 2 constructor. }
generalize (IHx y q u H'). destruct divmod as (q',u').
intros (EQ,LE); split; trivial.
rewrite <- EQ.
rewrite !add_succ_l, <- add_succ_r. f_equal. now rewrite <- sub_succ_l.
Qed.
Lemma div_mod x y : y<>0 -> x = y*(x/y) + x mod y.
Proof.
intros Hy.
destruct y; [ now elim Hy | clear Hy ].
unfold div, modulo.
generalize (divmod_spec x y 0 y (le_n y)).
destruct divmod as (q,u).
intros (U,V).
simpl in *.
now rewrite mul_0_r, sub_diag, !add_0_r in U.
Qed.
Lemma mod_bound_pos x y : 0<=x -> 0<y -> 0 <= x mod y < y.
Proof.
intros Hx Hy. split. apply le_0_l.
destruct y; [ now elim Hy | clear Hy ].
unfold modulo.
apply lt_succ_r, le_sub_l.
Qed.
(** ** Square root *)
Lemma sqrt_iter_spec : forall k p q r,
q = p+p -> r<=q ->
let s := sqrt_iter k p q r in
s*s <= k + p*p + (q - r) < (S s)*(S s).
Proof.
induction k.
- (* k = 0 *)
simpl; intros p q r Hq Hr.
split.
+ apply le_add_r.
+ apply lt_succ_r.
rewrite mul_succ_r.
rewrite add_assoc, (add_comm p), <- add_assoc.
apply add_le_mono_l.
rewrite <- Hq. apply le_sub_l.
- (* k = S k' *)
destruct r.
+ (* r = 0 *)
intros Hq _.
replace (S k + p*p + (q-0)) with (k + (S p)*(S p) + (S (S q) - S (S q))).
* apply IHk.
simpl. now rewrite add_succ_r, Hq. apply le_n.
* rewrite sub_diag, sub_0_r, add_0_r. simpl.
rewrite add_succ_r; f_equal. rewrite <- add_assoc; f_equal.
rewrite mul_succ_r, (add_comm p), <- add_assoc. now f_equal.
+ (* r = S r' *)
intros Hq Hr.
replace (S k + p*p + (q-S r)) with (k + p*p + (q - r)).
* apply IHk; trivial. apply le_trans with (S r); trivial. do 2 constructor.
* simpl. rewrite <- add_succ_r. f_equal. rewrite <- sub_succ_l; trivial.
Qed.
Lemma sqrt_specif n : (sqrt n)*(sqrt n) <= n < S (sqrt n) * S (sqrt n).
Proof.
set (s:=sqrt n).
replace n with (n + 0*0 + (0-0)).
apply sqrt_iter_spec; auto.
simpl. now rewrite !add_0_r.
Qed.
Definition sqrt_spec a (Ha:0<=a) := sqrt_specif a.
Lemma sqrt_neg a : a<0 -> sqrt a = 0.
Proof. inversion 1. Qed.
(** ** Logarithm *)
Lemma log2_iter_spec : forall k p q r,
2^(S p) = q + S r -> r < 2^p ->
let s := log2_iter k p q r in
2^s <= k + q < 2^(S s).
Proof.
induction k.
- (* k = 0 *)
intros p q r EQ LT. simpl log2_iter. cbv zeta.
split.
+ rewrite add_0_l.
rewrite (add_le_mono_l _ _ (2^p)).
simpl pow in EQ. rewrite add_0_r in EQ. rewrite EQ.
rewrite add_comm. apply add_le_mono_r. apply LT.
+ rewrite EQ, add_comm. apply add_lt_mono_l.
apply lt_succ_r, le_0_l.
- (* k = S k' *)
intros p q r EQ LT. destruct r.
+ (* r = 0 *)
rewrite add_succ_r, add_0_r in EQ.
rewrite add_succ_l, <- add_succ_r. apply IHk.
* rewrite <- EQ. remember (S p) as p'; simpl. now rewrite add_0_r.
* rewrite EQ. constructor.
+ (* r = S r' *)
rewrite add_succ_l, <- add_succ_r. apply IHk.
* now rewrite add_succ_l, <- add_succ_r.
* apply le_lt_trans with (S r); trivial. do 2 constructor.
Qed.
Lemma log2_spec n : 0<n ->
2^(log2 n) <= n < 2^(S (log2 n)).
Proof.
intros.
set (s:=log2 n).
replace n with (pred n + 1).
apply log2_iter_spec; auto.
rewrite add_1_r.
apply succ_pred. now apply neq_sym, lt_neq.
Qed.
Lemma log2_nonpos n : n<=0 -> log2 n = 0.
Proof.
inversion 1; now subst.
Qed.
(** ** Gcd *)
Definition divide x y := exists z, y=z*x.
Notation "( x | y )" := (divide x y) (at level 0) : nat_scope.
Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b).
Proof.
fix 1.
intros [|a] b; simpl.
split.
now exists 0.
exists 1. simpl. now rewrite <- plus_n_O.
fold (b mod (S a)).
destruct (gcd_divide (b mod (S a)) (S a)) as (H,H').
set (a':=S a) in *.
split; auto.
rewrite (div_mod b a') at 2 by discriminate.
destruct H as (u,Hu), H' as (v,Hv).
rewrite mul_comm.
exists ((b/a')*v + u).
rewrite mul_add_distr_r.
now rewrite <- mul_assoc, <- Hv, <- Hu.
Qed.
Lemma gcd_divide_l : forall a b, (gcd a b | a).
Proof.
intros. apply gcd_divide.
Qed.
Lemma gcd_divide_r : forall a b, (gcd a b | b).
Proof.
intros. apply gcd_divide.
Qed.
Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b).
Proof.
fix 1.
intros [|a] b; simpl; auto.
fold (b mod (S a)).
intros c H H'. apply gcd_greatest; auto.
set (a':=S a) in *.
rewrite (div_mod b a') in H' by discriminate.
destruct H as (u,Hu), H' as (v,Hv).
exists (v - (b/a')*u).
rewrite mul_comm in Hv.
rewrite mul_sub_distr_r, <- Hv, <- mul_assoc, <-Hu.
now rewrite add_comm, add_sub.
Qed.
Lemma gcd_nonneg a b : 0<=gcd a b.
Proof. apply le_0_l. Qed.
(** ** Bitwise operations *)
Lemma div2_double n : div2 (2*n) = n.
Proof.
induction n; trivial.
simpl mul. rewrite add_succ_r. simpl. now f_equal.
Qed.
Lemma div2_succ_double n : div2 (S (2*n)) = n.
Proof.
induction n; trivial.
simpl. f_equal. now rewrite add_succ_r.
Qed.
Lemma le_div2 n : div2 (S n) <= n.
Proof.
revert n.
fix 1.
destruct n; simpl; trivial. apply lt_succ_r.
destruct n; [simpl|]; trivial. now constructor.
Qed.
Lemma lt_div2 n : 0 < n -> div2 n < n.
Proof.
destruct n.
- inversion 1.
- intros _. apply lt_succ_r, le_div2.
Qed.
Lemma div2_decr a n : a <= S n -> div2 a <= n.
Proof.
destruct a; intros H.
- simpl. apply le_0_l.
- apply succ_le_mono in H.
apply le_trans with a; [ apply le_div2 | trivial ].
Qed.
Lemma double_twice : forall n, double n = 2*n.
Proof.
simpl; intros. now rewrite add_0_r.
Qed.
Lemma testbit_0_l : forall n, testbit 0 n = false.
Proof.
now induction n.
Qed.
Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.
Proof.
unfold testbit. rewrite odd_spec. now exists a.
Qed.
Lemma testbit_even_0 a : testbit (2*a) 0 = false.
Proof.
unfold testbit, odd. rewrite (proj2 (even_spec _)); trivial.
now exists a.
Qed.
Lemma testbit_odd_succ' a n : testbit (2*a+1) (S n) = testbit a n.
Proof.
unfold testbit; fold testbit.
rewrite add_1_r. f_equal.
apply div2_succ_double.
Qed.
Lemma testbit_even_succ' a n : testbit (2*a) (S n) = testbit a n.
Proof.
unfold testbit; fold testbit. f_equal. apply div2_double.
Qed.
Lemma shiftr_specif : forall a n m,
testbit (shiftr a n) m = testbit a (m+n).
Proof.
induction n; intros m. trivial.
now rewrite add_0_r.
now rewrite add_succ_r, <- add_succ_l, <- IHn.
Qed.
Lemma shiftl_specif_high : forall a n m, n<=m ->
testbit (shiftl a n) m = testbit a (m-n).
Proof.
induction n; intros m H. trivial.
now rewrite sub_0_r.
destruct m. inversion H.
simpl. apply succ_le_mono in H.
change (shiftl a (S n)) with (double (shiftl a n)).
rewrite double_twice, div2_double. now apply IHn.
Qed.
Lemma shiftl_spec_low : forall a n m, m<n ->
testbit (shiftl a n) m = false.
Proof.
induction n; intros m H. inversion H.
change (shiftl a (S n)) with (double (shiftl a n)).
destruct m; simpl.
unfold odd. apply negb_false_iff.
apply even_spec. exists (shiftl a n). apply double_twice.
rewrite double_twice, div2_double. apply IHn.
now apply succ_le_mono.
Qed.
Lemma div2_bitwise : forall op n a b,
div2 (bitwise op (S n) a b) = bitwise op n (div2 a) (div2 b).
Proof.
intros. unfold bitwise; fold bitwise.
destruct (op (odd a) (odd b)).
now rewrite div2_succ_double.
now rewrite add_0_l, div2_double.
Qed.
Lemma odd_bitwise : forall op n a b,
odd (bitwise op (S n) a b) = op (odd a) (odd b).
Proof.
intros. unfold bitwise; fold bitwise.
destruct (op (odd a) (odd b)).
apply odd_spec. rewrite add_comm. eexists; eauto.
unfold odd. apply negb_false_iff. apply even_spec.
rewrite add_0_l; eexists; eauto.
Qed.
Lemma testbit_bitwise_1 : forall op, (forall b, op false b = false) ->
forall n m a b, a<=n ->
testbit (bitwise op n a b) m = op (testbit a m) (testbit b m).
Proof.
intros op Hop.
induction n; intros m a b Ha.
simpl. inversion Ha; subst. now rewrite testbit_0_l.
destruct m.
apply odd_bitwise.
unfold testbit; fold testbit. rewrite div2_bitwise.
apply IHn. now apply div2_decr.
Qed.
Lemma testbit_bitwise_2 : forall op, op false false = false ->
forall n m a b, a<=n -> b<=n ->
testbit (bitwise op n a b) m = op (testbit a m) (testbit b m).
Proof.
intros op Hop.
induction n; intros m a b Ha Hb.
simpl. inversion Ha; inversion Hb; subst. now rewrite testbit_0_l.
destruct m.
apply odd_bitwise.
unfold testbit; fold testbit. rewrite div2_bitwise.
apply IHn; now apply div2_decr.
Qed.
Lemma land_spec a b n :
testbit (land a b) n = testbit a n && testbit b n.
Proof.
unfold land. apply testbit_bitwise_1; trivial.
Qed.
Lemma ldiff_spec a b n :
testbit (ldiff a b) n = testbit a n && negb (testbit b n).
Proof.
unfold ldiff. apply testbit_bitwise_1; trivial.
Qed.
Lemma lor_spec a b n :
testbit (lor a b) n = testbit a n || testbit b n.
Proof.
unfold lor. apply testbit_bitwise_2.
- trivial.
- destruct (compare_spec a b).
+ rewrite max_l; subst; trivial.
+ apply lt_le_incl in H. now rewrite max_r.
+ apply lt_le_incl in H. now rewrite max_l.
- destruct (compare_spec a b).
+ rewrite max_r; subst; trivial.
+ apply lt_le_incl in H. now rewrite max_r.
+ apply lt_le_incl in H. now rewrite max_l.
Qed.
Lemma lxor_spec a b n :
testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
Proof.
unfold lxor. apply testbit_bitwise_2.
- trivial.
- destruct (compare_spec a b).
+ rewrite max_l; subst; trivial.
+ apply lt_le_incl in H. now rewrite max_r.
+ apply lt_le_incl in H. now rewrite max_l.
- destruct (compare_spec a b).
+ rewrite max_r; subst; trivial.
+ apply lt_le_incl in H. now rewrite max_r.
+ apply lt_le_incl in H. now rewrite max_l.
Qed.
Lemma div2_spec a : div2 a = shiftr a 1.
Proof.
reflexivity.
Qed.
(** Aliases with extra dummy hypothesis, to fulfil the interface *)
Definition testbit_odd_succ a n (_:0<=n) := testbit_odd_succ' a n.
Definition testbit_even_succ a n (_:0<=n) := testbit_even_succ' a n.
Lemma testbit_neg_r a n (H:n<0) : testbit a n = false.
Proof. inversion H. Qed.
Definition shiftl_spec_high a n m (_:0<=m) := shiftl_specif_high a n m.
Definition shiftr_spec a n m (_:0<=m) := shiftr_specif a n m.
(** Properties of advanced functions (pow, sqrt, log2, ...) *)
Include NExtraProp.
(** Properties of tail-recursive addition and multiplication *)
Lemma tail_add_spec n m : tail_add n m = n + m.
Proof.
revert m. induction n as [|n IH]; simpl; trivial.
intros. now rewrite IH, add_succ_r.
Qed.
Lemma tail_addmul_spec r n m : tail_addmul r n m = r + n * m.
Proof.
revert m r. induction n as [| n IH]; simpl; trivial.
intros. rewrite IH, tail_add_spec.
rewrite add_assoc. f_equal. apply add_comm.
Qed.
Lemma tail_mul_spec n m : tail_mul n m = n * m.
Proof.
unfold tail_mul. now rewrite tail_addmul_spec.
Qed.
End Nat.
(** Re-export notations that should be available even when
the [Nat] module is not imported. *)
Bind Scope nat_scope with Nat.t nat.
Infix "^" := Nat.pow : nat_scope.
Infix "=?" := Nat.eqb (at level 70) : nat_scope.
Infix "<=?" := Nat.leb (at level 70) : nat_scope.
Infix "<?" := Nat.ltb (at level 70) : nat_scope.
Infix "?=" := Nat.compare (at level 70) : nat_scope.
Infix "/" := Nat.div : nat_scope.
Infix "mod" := Nat.modulo (at level 40, no associativity) : nat_scope.
Hint Unfold Nat.le : core.
Hint Unfold Nat.lt : core.
(** [Nat] contains an [order] tactic for natural numbers *)
(** Note that [Nat.order] is domain-agnostic: it will not prove
[1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *)
Section TestOrder.
Let test : forall x y, x<=y -> y<=x -> x=y.
Proof.
Nat.order.
Qed.
End TestOrder.
|