aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Arith/Mult.v
blob: cbb9b376b24e8b5fa822bef997754cdd6a6f5c82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Export Plus.
Require Export Minus.
Require Export Lt.
Require Export Le.

Local Open Scope nat_scope.

Implicit Types m n p : nat.

(** Theorems about multiplication in [nat]. [mult] is defined in module [Init/Peano.v]. *)

(** * [nat] is a semi-ring *)

(** ** Zero property *)

Lemma mult_0_r : forall n, n * 0 = 0.
Proof.
  intro; symmetry ; apply mult_n_O.
Qed.

Lemma mult_0_l : forall n, 0 * n = 0.
Proof.
  reflexivity.
Qed.

(** ** 1 is neutral *)

Lemma mult_1_l : forall n, 1 * n = n.
Proof.
  simpl; auto with arith.
Qed.
Hint Resolve mult_1_l: arith v62.

Lemma mult_1_r : forall n, n * 1 = n.
Proof.
  induction n; [ trivial |
    simpl; rewrite IHn; reflexivity].
Qed.
Hint Resolve mult_1_r: arith v62.

(** ** Commutativity *)

Lemma mult_comm : forall n m, n * m = m * n.
Proof.
intros; induction n; simpl; auto with arith.
rewrite <- mult_n_Sm.
rewrite IHn; apply plus_comm.
Qed.
Hint Resolve mult_comm: arith v62.

(** ** Distributivity *)

Lemma mult_plus_distr_r : forall n m p, (n + m) * p = n * p + m * p.
Proof.
  intros; induction n; simpl; auto with arith.
  rewrite <- plus_assoc, IHn; auto with arith.
Qed.
Hint Resolve mult_plus_distr_r: arith v62.

Lemma mult_plus_distr_l : forall n m p, n * (m + p) = n * m + n * p.
Proof.
  induction n. trivial.
  intros. simpl. rewrite IHn. symmetry. apply plus_permute_2_in_4.
Qed.

Lemma mult_minus_distr_r : forall n m p, (n - m) * p = n * p - m * p.
Proof.
  intros; induction n, m using nat_double_ind; simpl; auto with arith.
  rewrite <- minus_plus_simpl_l_reverse; auto with arith.
Qed.
Hint Resolve mult_minus_distr_r: arith v62.

Lemma mult_minus_distr_l : forall n m p, n * (m - p) = n * m - n * p.
Proof.
  intros n m p.
  rewrite mult_comm, mult_minus_distr_r, (mult_comm m n), (mult_comm p n); reflexivity.
Qed.
Hint Resolve mult_minus_distr_l: arith v62.

(** ** Associativity *)

Lemma mult_assoc_reverse : forall n m p, n * m * p = n * (m * p).
Proof.
  intros; induction n; simpl; auto with arith.
  rewrite mult_plus_distr_r.
  induction IHn; auto with arith.
Qed.
Hint Resolve mult_assoc_reverse: arith v62.

Lemma mult_assoc : forall n m p, n * (m * p) = n * m * p.
Proof.
  auto with arith.
Qed.
Hint Resolve mult_assoc: arith v62.

(** ** Inversion lemmas *)

Lemma mult_is_O : forall n m, n * m = 0 -> n = 0 \/ m = 0.
Proof.
  destruct n as [| n]; simpl; intros m H.
    left; trivial.
    right; apply plus_is_O in H; destruct H; trivial.
Qed.

Lemma mult_is_one : forall n m, n * m = 1 -> n = 1 /\ m = 1.
Proof.
  destruct n as [|n]; simpl; intros m H.
    edestruct O_S; eauto.
    destruct plus_is_one with (1:=H) as [[-> Hnm] | [-> Hnm]].
      simpl in H; rewrite mult_0_r in H; elim (O_S _ H).
      rewrite mult_1_r in Hnm; auto.
Qed.

(** ** Multiplication and successor *)

Lemma mult_succ_l : forall n m:nat, S n * m = n * m + m.
Proof.
  intros; simpl. rewrite plus_comm. reflexivity.
Qed.

Lemma mult_succ_r : forall n m:nat, n * S m = n * m + n.
Proof.
  induction n as [| p H]; intro m; simpl.
  reflexivity.
  rewrite H, <- plus_n_Sm; apply f_equal; rewrite plus_assoc; reflexivity.
Qed.

(** * Compatibility with orders *)

Lemma mult_O_le : forall n m, m = 0 \/ n <= m * n.
Proof.
  induction m; simpl; auto with arith.
Qed.
Hint Resolve mult_O_le: arith v62.

Lemma mult_le_compat_l : forall n m p, n <= m -> p * n <= p * m.
Proof.
  induction p as [| p IHp]; intros; simpl.
  apply le_n.
  auto using plus_le_compat.
Qed.
Hint Resolve mult_le_compat_l: arith.


Lemma mult_le_compat_r : forall n m p, n <= m -> n * p <= m * p.
Proof.
  intros m n p H; rewrite mult_comm, (mult_comm n); auto with arith.
Qed.

Lemma mult_le_compat :
  forall n m p (q:nat), n <= m -> p <= q -> n * p <= m * q.
Proof.
  intros m n p q Hmn Hpq; induction Hmn.
  induction Hpq.
  (* m*p<=m*p *)
  apply le_n.
  (* m*p<=m*m0 -> m*p<=m*(S m0) *)
  rewrite <- mult_n_Sm; apply le_trans with (m * m0).
  assumption.
  apply le_plus_l.
  (* m*p<=m0*q -> m*p<=(S m0)*q *)
  simpl; apply le_trans with (m0 * q).
  assumption.
  apply le_plus_r.
Qed.

Lemma mult_S_lt_compat_l : forall n m p, m < p -> S n * m < S n * p.
Proof.
  induction n; intros; simpl in *.
    rewrite <- 2 plus_n_O; assumption.
    auto using plus_lt_compat.
Qed.

Hint Resolve mult_S_lt_compat_l: arith.

Lemma mult_lt_compat_l : forall n m p, n < m -> 0 < p -> p * n < p * m.
Proof.
 intros m n p H Hp. destruct p. elim (lt_irrefl _ Hp).
 now apply mult_S_lt_compat_l.
Qed.

Lemma mult_lt_compat_r : forall n m p, n < m -> 0 < p -> n * p < m * p.
Proof.
  intros m n p H Hp. destruct p. elim (lt_irrefl _ Hp).
  rewrite (mult_comm m), (mult_comm n). now apply mult_S_lt_compat_l.
Qed.

Lemma mult_S_le_reg_l : forall n m p, S n * m <= S n * p -> m <= p.
Proof.
  intros m n p H; destruct (le_or_lt n p). trivial.
  assert (H1:S m * n < S m * n).
    apply le_lt_trans with (m := S m * p). assumption.
    apply mult_S_lt_compat_l. assumption.
  elim (lt_irrefl _ H1).
Qed.

(** * n|->2*n and n|->2n+1 have disjoint image *)

Theorem odd_even_lem : forall p q, 2 * p + 1 <> 2 * q.
Proof.
  induction p; destruct q.
    discriminate.
    simpl; rewrite plus_comm. discriminate.
    discriminate.
    intro H0; destruct (IHp q).
    replace (2 * q) with (2 * S q - 2).
      rewrite <- H0; simpl.
      repeat rewrite (fun x y => plus_comm x (S y)); simpl;  auto.
    simpl; rewrite (fun y => plus_comm q (S y)); destruct q; simpl; auto.
Qed.


(** * Tail-recursive mult *)

(** [tail_mult] is an alternative definition for [mult] which is
    tail-recursive, whereas [mult] is not. This can be useful
    when extracting programs. *)

Fixpoint mult_acc (s:nat) m n : nat :=
  match n with
    | O => s
    | S p => mult_acc (tail_plus m s) m p
  end.

Lemma mult_acc_aux : forall n m p, m + n * p = mult_acc m p n.
Proof.
  induction n as [| p IHp]; simpl; auto.
  intros s m; rewrite <- plus_tail_plus; rewrite <- IHp.
  rewrite <- plus_assoc_reverse; apply f_equal2; auto.
  rewrite plus_comm; auto.
Qed.

Definition tail_mult n m := mult_acc 0 m n.

Lemma mult_tail_mult : forall n m, n * m = tail_mult n m.
Proof.
  intros; unfold tail_mult; rewrite <- mult_acc_aux; auto.
Qed.

(** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus]
    and [mult] and simplify *)

Ltac tail_simpl :=
  repeat rewrite <- plus_tail_plus; repeat rewrite <- mult_tail_mult;
    simpl.