1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Properties of multiplication.
This file is mostly OBSOLETE now, see module [PeanoNat.Nat] instead.
[Nat.mul] is defined in [Init/Nat.v].
*)
Require Import PeanoNat.
(** For Compatibility: *)
Require Export Plus Minus Le Lt.
Local Open Scope nat_scope.
(** * [nat] is a semi-ring *)
(** ** Zero property *)
Notation mult_0_l := Nat.mul_0_l (only parsing). (* 0 * n = 0 *)
Notation mult_0_r := Nat.mul_0_r (only parsing). (* n * 0 = 0 *)
(** ** 1 is neutral *)
Notation mult_1_l := Nat.mul_1_l (only parsing). (* 1 * n = n *)
Notation mult_1_r := Nat.mul_1_r (only parsing). (* n * 1 = n *)
Hint Resolve mult_1_l mult_1_r: arith.
(** ** Commutativity *)
Notation mult_comm := Nat.mul_comm (only parsing). (* n * m = m * n *)
Hint Resolve mult_comm: arith.
(** ** Distributivity *)
Notation mult_plus_distr_r :=
Nat.mul_add_distr_r (only parsing). (* (n+m)*p = n*p + m*p *)
Notation mult_plus_distr_l :=
Nat.mul_add_distr_l (only parsing). (* n*(m+p) = n*m + n*p *)
Notation mult_minus_distr_r :=
Nat.mul_sub_distr_r (only parsing). (* (n-m)*p = n*p - m*p *)
Notation mult_minus_distr_l :=
Nat.mul_sub_distr_l (only parsing). (* n*(m-p) = n*m - n*p *)
Hint Resolve mult_plus_distr_r: arith.
Hint Resolve mult_minus_distr_r: arith.
Hint Resolve mult_minus_distr_l: arith.
(** ** Associativity *)
Notation mult_assoc := Nat.mul_assoc (only parsing). (* n*(m*p)=n*m*p *)
Lemma mult_assoc_reverse n m p : n * m * p = n * (m * p).
Proof.
symmetry. apply Nat.mul_assoc.
Qed.
Hint Resolve mult_assoc_reverse: arith.
Hint Resolve mult_assoc: arith.
(** ** Inversion lemmas *)
Lemma mult_is_O n m : n * m = 0 -> n = 0 \/ m = 0.
Proof.
apply Nat.eq_mul_0.
Qed.
Lemma mult_is_one n m : n * m = 1 -> n = 1 /\ m = 1.
Proof.
apply Nat.eq_mul_1.
Qed.
(** ** Multiplication and successor *)
Notation mult_succ_l := Nat.mul_succ_l (only parsing). (* S n * m = n * m + m *)
Notation mult_succ_r := Nat.mul_succ_r (only parsing). (* n * S m = n * m + n *)
(** * Compatibility with orders *)
Lemma mult_O_le n m : m = 0 \/ n <= m * n.
Proof.
destruct m; [left|right]; simpl; trivial using Nat.le_add_r.
Qed.
Hint Resolve mult_O_le: arith.
Lemma mult_le_compat_l n m p : n <= m -> p * n <= p * m.
Proof.
apply Nat.mul_le_mono_nonneg_l, Nat.le_0_l. (* TODO : get rid of 0<=n hyp *)
Qed.
Hint Resolve mult_le_compat_l: arith.
Lemma mult_le_compat_r n m p : n <= m -> n * p <= m * p.
Proof.
apply Nat.mul_le_mono_nonneg_r, Nat.le_0_l.
Qed.
Lemma mult_le_compat n m p q : n <= m -> p <= q -> n * p <= m * q.
Proof.
intros. apply Nat.mul_le_mono_nonneg; trivial; apply Nat.le_0_l.
Qed.
Lemma mult_S_lt_compat_l n m p : m < p -> S n * m < S n * p.
Proof.
apply Nat.mul_lt_mono_pos_l, Nat.lt_0_succ.
Qed.
Hint Resolve mult_S_lt_compat_l: arith.
Lemma mult_lt_compat_l n m p : n < m -> 0 < p -> p * n < p * m.
Proof.
intros. now apply Nat.mul_lt_mono_pos_l.
Qed.
Lemma mult_lt_compat_r n m p : n < m -> 0 < p -> n * p < m * p.
Proof.
intros. now apply Nat.mul_lt_mono_pos_r.
Qed.
Lemma mult_S_le_reg_l n m p : S n * m <= S n * p -> m <= p.
Proof.
apply Nat.mul_le_mono_pos_l, Nat.lt_0_succ.
Qed.
(** * n|->2*n and n|->2n+1 have disjoint image *)
Theorem odd_even_lem p q : 2 * p + 1 <> 2 * q.
Proof.
intro. apply (Nat.Even_Odd_False (2*q)).
- now exists q.
- now exists p.
Qed.
(** * Tail-recursive mult *)
(** [tail_mult] is an alternative definition for [mult] which is
tail-recursive, whereas [mult] is not. This can be useful
when extracting programs. *)
Fixpoint mult_acc (s:nat) m n : nat :=
match n with
| O => s
| S p => mult_acc (tail_plus m s) m p
end.
Lemma mult_acc_aux : forall n m p, m + n * p = mult_acc m p n.
Proof.
induction n as [| n IHn]; simpl; auto.
intros. rewrite Nat.add_assoc, IHn. f_equal.
rewrite Nat.add_comm. apply plus_tail_plus.
Qed.
Definition tail_mult n m := mult_acc 0 m n.
Lemma mult_tail_mult : forall n m, n * m = tail_mult n m.
Proof.
intros; unfold tail_mult; rewrite <- mult_acc_aux; auto.
Qed.
(** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus]
and [mult] and simplify *)
Ltac tail_simpl :=
repeat rewrite <- plus_tail_plus; repeat rewrite <- mult_tail_mult;
simpl.
|