1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(** Subtraction (difference between two natural numbers) *)
Require Import Lt.
Require Import Le.
Open Local Scope nat_scope.
Implicit Types m n p : nat.
(** 0 is right neutral *)
Lemma minus_n_O : forall n, n = n - 0.
Proof.
induction n; simpl in |- *; auto with arith.
Qed.
Hint Resolve minus_n_O: arith v62.
(** Permutation with successor *)
Lemma minus_Sn_m : forall n m, m <= n -> S (n - m) = S n - m.
Proof.
intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *;
auto with arith.
Qed.
Hint Resolve minus_Sn_m: arith v62.
Theorem pred_of_minus : forall n, pred n = n - 1.
intro x; induction x; simpl in |- *; auto with arith.
Qed.
(** Diagonal *)
Lemma minus_n_n : forall n, 0 = n - n.
Proof.
induction n; simpl in |- *; auto with arith.
Qed.
Hint Resolve minus_n_n: arith v62.
(** Simplification *)
Lemma minus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m).
Proof.
induction p; simpl in |- *; auto with arith.
Qed.
Hint Resolve minus_plus_simpl_l_reverse: arith v62.
(** Relation with plus *)
Lemma plus_minus : forall n m p, n = m + p -> p = n - m.
Proof.
intros n m p; pattern m, n in |- *; apply nat_double_ind; simpl in |- *;
intros.
replace (n0 - 0) with n0; auto with arith.
absurd (0 = S (n0 + p)); auto with arith.
auto with arith.
Qed.
Hint Immediate plus_minus: arith v62.
Lemma minus_plus : forall n m, n + m - n = m.
symmetry in |- *; auto with arith.
Qed.
Hint Resolve minus_plus: arith v62.
Lemma le_plus_minus : forall n m, n <= m -> m = n + (m - n).
Proof.
intros n m Le; pattern n, m in |- *; apply le_elim_rel; simpl in |- *;
auto with arith.
Qed.
Hint Resolve le_plus_minus: arith v62.
Lemma le_plus_minus_r : forall n m, n <= m -> n + (m - n) = m.
Proof.
symmetry in |- *; auto with arith.
Qed.
Hint Resolve le_plus_minus_r: arith v62.
(** Relation with order *)
Theorem le_minus : forall n m, n - m <= n.
Proof.
intros i h; pattern i, h in |- *; apply nat_double_ind;
[ auto
| auto
| intros m n H; simpl in |- *; apply le_trans with (m := m); auto ].
Qed.
Lemma lt_minus : forall n m, m <= n -> 0 < m -> n - m < n.
Proof.
intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *;
auto with arith.
intros; absurd (0 < 0); auto with arith.
intros p q lepq Hp gtp.
elim (le_lt_or_eq 0 p); auto with arith.
auto with arith.
induction 1; elim minus_n_O; auto with arith.
Qed.
Hint Resolve lt_minus: arith v62.
Lemma lt_O_minus_lt : forall n m, 0 < n - m -> m < n.
Proof.
intros n m; pattern n, m in |- *; apply nat_double_ind; simpl in |- *;
auto with arith.
intros; absurd (0 < 0); trivial with arith.
Qed.
Hint Immediate lt_O_minus_lt: arith v62.
Theorem not_le_minus_0 : forall n m, ~ m <= n -> n - m = 0.
intros y x; pattern y, x in |- *; apply nat_double_ind;
[ simpl in |- *; trivial with arith
| intros n H; absurd (0 <= S n); [ assumption | apply le_O_n ]
| simpl in |- *; intros n m H1 H2; apply H1; unfold not in |- *; intros H3;
apply H2; apply le_n_S; assumption ].
Qed.
|