aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Arith/Le.v
blob: 1f265b8f52feee76930cf6c31c615114f78e8806 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id$ i*)

(** Order on natural numbers *)
Open Local Scope nat_scope.

Implicit Types m n p : nat.

(** Reflexivity *)

Theorem le_refl : forall n, n <= n.
Proof.
exact le_n.
Qed.

(** Transitivity *)

Theorem le_trans : forall n m p, n <= m -> m <= p -> n <= p.
Proof.
  induction 2; auto.
Qed.
Hint Resolve le_trans: arith v62.

(** Order, successor and predecessor *)

Theorem le_n_S : forall n m, n <= m -> S n <= S m.
Proof.
  induction 1; auto.
Qed.

Theorem le_n_Sn : forall n, n <= S n.
Proof.
  auto.
Qed.

Theorem le_O_n : forall n, 0 <= n.
Proof.
  induction n; auto.
Qed.

Hint Resolve le_n_S le_n_Sn le_O_n le_n_S: arith v62.

Theorem le_pred_n : forall n, pred n <= n.
Proof.
induction n; auto with arith.
Qed.
Hint Resolve le_pred_n: arith v62.

Theorem le_Sn_le : forall n m, S n <= m -> n <= m.
Proof.
intros n m H; apply le_trans with (S n); auto with arith.
Qed.
Hint Immediate le_Sn_le: arith v62.

Theorem le_S_n : forall n m, S n <= S m -> n <= m.
Proof.
intros n m H; change (pred (S n) <= pred (S m)) in |- *.
destruct H; simpl; auto with arith.
Qed.
Hint Immediate le_S_n: arith v62.

Theorem le_pred : forall n m, n <= m -> pred n <= pred m.
Proof.
destruct n; simpl; auto with arith.
destruct m; simpl; auto with arith.
Qed.

(** Comparison to 0 *)

Theorem le_Sn_O : forall n, ~ S n <= 0.
Proof.
red in |- *; intros n H.
change (IsSucc 0) in |- *; elim H; simpl in |- *; auto with arith.
Qed.
Hint Resolve le_Sn_O: arith v62.

Theorem le_n_O_eq : forall n, n <= 0 -> 0 = n.
Proof.
induction n; auto with arith.
intro; contradiction le_Sn_O with n.
Qed.
Hint Immediate le_n_O_eq: arith v62.

(** Negative properties *)

Theorem le_Sn_n : forall n, ~ S n <= n.
Proof.
induction n; auto with arith.
Qed.
Hint Resolve le_Sn_n: arith v62.

(** Antisymmetry *)

Theorem le_antisym : forall n m, n <= m -> m <= n -> n = m.
Proof.
intros n m h; destruct h as [| m0 H]; auto with arith.
intros H1.
absurd (S m0 <= m0); auto with arith.
apply le_trans with n; auto with arith.
Qed.
Hint Immediate le_antisym: arith v62.

(** A different elimination principle for the order on natural numbers *)

Lemma le_elim_rel :
 forall P:nat -> nat -> Prop,
   (forall p, P 0 p) ->
   (forall p (q:nat), p <= q -> P p q -> P (S p) (S q)) ->
   forall n m, n <= m -> P n m.
Proof.
induction n; auto with arith.
intros m Le.
elim Le; auto with arith.
Qed.