1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import PeanoNat.
Local Open Scope nat_scope.
(** Equality on natural numbers *)
(** * Propositional equality *)
Fixpoint eq_nat n m : Prop :=
match n, m with
| O, O => True
| O, S _ => False
| S _, O => False
| S n1, S m1 => eq_nat n1 m1
end.
Theorem eq_nat_refl n : eq_nat n n.
Proof.
induction n; simpl; auto.
Qed.
Hint Resolve eq_nat_refl: arith.
(** [eq] restricted to [nat] and [eq_nat] are equivalent *)
Theorem eq_nat_is_eq n m : eq_nat n m <-> n = m.
Proof.
split.
- revert m; induction n; destruct m; simpl; contradiction || auto.
- intros <-; apply eq_nat_refl.
Qed.
Lemma eq_eq_nat n m : n = m -> eq_nat n m.
Proof.
apply eq_nat_is_eq.
Qed.
Lemma eq_nat_eq n m : eq_nat n m -> n = m.
Proof.
apply eq_nat_is_eq.
Qed.
Hint Immediate eq_eq_nat eq_nat_eq: arith.
Theorem eq_nat_elim :
forall n (P:nat -> Prop), P n -> forall m, eq_nat n m -> P m.
Proof.
intros; replace m with n; auto with arith.
Qed.
Theorem eq_nat_decide : forall n m, {eq_nat n m} + {~ eq_nat n m}.
Proof.
induction n; destruct m; simpl.
- left; trivial.
- right; intro; trivial.
- right; intro; trivial.
- apply IHn.
Defined.
(** * Boolean equality on [nat].
We reuse the one already defined in module [Nat].
In scope [nat_scope], the notation "=?" can be used. *)
Notation beq_nat := Nat.eqb (only parsing).
Notation beq_nat_true_iff := Nat.eqb_eq (only parsing).
Notation beq_nat_false_iff := Nat.eqb_neq (only parsing).
Lemma beq_nat_refl n : true = (n =? n).
Proof.
symmetry. apply Nat.eqb_refl.
Qed.
Lemma beq_nat_true n m : (n =? m) = true -> n=m.
Proof.
apply Nat.eqb_eq.
Qed.
Lemma beq_nat_false n m : (n =? m) = false -> n<>m.
Proof.
apply Nat.eqb_neq.
Qed.
(** TODO: is it really useful here to have a Defined ?
Otherwise we could use Nat.eqb_eq *)
Definition beq_nat_eq : forall n m, true = (n =? m) -> n = m.
Proof.
induction n; destruct m; simpl.
- reflexivity.
- discriminate.
- discriminate.
- intros H. case (IHn _ H). reflexivity.
Defined.
|