1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
Require Import TestSuite.admit.
Require Import Setoid.
Parameter A : Set.
Axiom eq_dec : forall a b : A, {a = b} + {a <> b}.
Inductive set : Set :=
| Empty : set
| Add : A -> set -> set.
Fixpoint In (a : A) (s : set) {struct s} : Prop :=
match s with
| Empty => False
| Add b s' => a = b \/ In a s'
end.
Definition same (s t : set) : Prop := forall a : A, In a s <-> In a t.
Lemma setoid_set : Setoid_Theory set same.
unfold same; split ; red.
red; auto.
red.
intros.
elim (H a); auto.
intros.
elim (H a); elim (H0 a).
split; auto.
Qed.
Add Setoid set same setoid_set as setsetoid.
Add Morphism In : In_ext.
unfold same; intros a s t H; elim (H a); auto.
Qed.
Lemma add_aux :
forall s t : set,
same s t -> forall a b : A, In a (Add b s) -> In a (Add b t).
unfold same; simple induction 2; intros.
rewrite H1.
simpl; left; reflexivity.
elim (H a).
intros.
simpl; right.
apply (H2 H1).
Qed.
Add Morphism Add : Add_ext.
split; apply add_aux.
assumption.
rewrite H.
reflexivity.
Qed.
Fixpoint remove (a : A) (s : set) {struct s} : set :=
match s with
| Empty => Empty
| Add b t =>
match eq_dec a b with
| left _ => remove a t
| right _ => Add b (remove a t)
end
end.
Lemma in_rem_not : forall (a : A) (s : set), ~ In a (remove a (Add a Empty)).
intros.
setoid_replace (remove a (Add a Empty)) with Empty.
auto.
unfold same.
split.
simpl.
case (eq_dec a a).
intros e ff; elim ff.
intros; absurd (a = a); trivial.
simpl.
intro H; elim H.
Qed.
Parameter P : set -> Prop.
Parameter P_ext : forall s t : set, same s t -> P s -> P t.
Add Morphism P : P_extt.
intros; split; apply P_ext; (assumption || apply (Seq_sym _ _ setoid_set); assumption).
Qed.
Lemma test_rewrite :
forall (a : A) (s t : set), same s t -> P (Add a s) -> P (Add a t).
intros.
rewrite <- H.
rewrite H.
setoid_rewrite <- H.
setoid_rewrite H.
setoid_rewrite <- H.
trivial.
Qed.
(* Unifying the domain up to delta-conversion (example from emakarov) *)
Definition id: Set -> Set := fun A => A.
Definition rel : forall A : Set, relation (id A) := @eq.
Definition f: forall A : Set, A -> A := fun A x => x.
Add Relation (id A) (rel A) as eq_rel.
Add Morphism (@f A) : f_morph.
Proof.
unfold rel, f. trivial.
Qed.
(* Submitted by Nicolas Tabareau *)
(* Needs unification.ml to support environments with de Bruijn *)
Goal forall
(f : Prop -> Prop)
(Q : (nat -> Prop) -> Prop)
(H : forall (h : nat -> Prop), Q (fun x : nat => f (h x)) <-> True)
(h:nat -> Prop),
Q (fun x : nat => f (Q (fun b : nat => f (h x)))) <-> True.
intros f0 Q H.
setoid_rewrite H.
tauto.
Qed.
(** Check proper refreshing of the lemma application for multiple
different instances in a single setoid rewrite. *)
Section mult.
Context (fold : forall {A} {B}, (A -> B) -> A -> B).
Context (add : forall A, A -> A).
Context (fold_lemma : forall {A B f} {eqA : relation B} x, eqA (fold A B f (add A x)) (fold _ _ f x)).
Context (ab : forall B, A -> B).
Context (anat : forall A, nat -> A).
Goal forall x, (fold _ _ (fun x => ab A x) (add A x) = anat _ (fold _ _ (ab nat) (add _ x))).
Proof. intros.
setoid_rewrite fold_lemma.
change (fold A A (fun x0 : A => ab A x0) x = anat A (fold A nat (ab nat) x)).
Abort.
End mult.
(** Current semantics for rewriting with typeclass constraints in the lemma
does not fix the instance at the first unification, use [at], or simply rewrite for
this semantics. *)
Parameter beq_nat : forall x y : nat, bool.
Class Foo (A : Type) := {foo_neg : A -> A ; foo_prf : forall x : A, x = foo_neg x}.
Instance: Foo nat. admit. Defined.
Instance: Foo bool. admit. Defined.
Goal forall (x : nat) (y : bool), beq_nat (foo_neg x) 0 = foo_neg y.
Proof. intros. setoid_rewrite <- foo_prf. change (beq_nat x 0 = y). Abort.
Goal forall (x : nat) (y : bool), beq_nat (foo_neg x) 0 = foo_neg y.
Proof. intros. setoid_rewrite <- @foo_prf at 1. change (beq_nat x 0 = foo_neg y). Abort.
|