1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
Unset Strict Universe Declaration.
Module withoutpoly.
Inductive empty :=.
Inductive emptyt : Type :=.
Inductive singleton : Type :=
single.
Inductive singletoninfo : Type :=
singleinfo : unit -> singletoninfo.
Inductive singletonset : Set :=
singleset.
Inductive singletonnoninfo : Type :=
singlenoninfo : empty -> singletonnoninfo.
Inductive singletoninfononinfo : Prop :=
singleinfononinfo : unit -> singletoninfononinfo.
Inductive bool : Type :=
| true | false.
Inductive smashedbool : Prop :=
| trueP | falseP.
End withoutpoly.
Set Universe Polymorphism.
Inductive empty :=.
Inductive emptyt : Type :=.
Inductive singleton : Type :=
single.
Inductive singletoninfo : Type :=
singleinfo : unit -> singletoninfo.
Inductive singletonset : Set :=
singleset.
Inductive singletonnoninfo : Type :=
singlenoninfo : empty -> singletonnoninfo.
Inductive singletoninfononinfo : Prop :=
singleinfononinfo : unit -> singletoninfononinfo.
Inductive bool : Type :=
| true | false.
Inductive smashedbool : Prop :=
| trueP | falseP.
Section foo.
Let T := Type.
Inductive polybool : T :=
| trueT | falseT.
End foo.
Inductive list (A: Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.
Module ftypSetSet.
Inductive ftyp : Type :=
| Funit : ftyp
| Ffun : list ftyp -> ftyp
| Fref : area -> ftyp
with area : Type :=
| Stored : ftyp -> area
.
End ftypSetSet.
Module ftypSetProp.
Inductive ftyp : Type :=
| Funit : ftyp
| Ffun : list ftyp -> ftyp
| Fref : area -> ftyp
with area : Type :=
| Stored : (* ftyp -> *)area
.
End ftypSetProp.
Module ftypSetSetForced.
Inductive ftyp : Type :=
| Funit : ftyp
| Ffun : list ftyp -> ftyp
| Fref : area -> ftyp
with area : Set (* Type *) :=
| Stored : (* ftyp -> *)area
.
End ftypSetSetForced.
Unset Universe Polymorphism.
Set Printing Universes.
Module Easy.
Polymorphic Inductive prod (A : Type) (B : Type) : Type :=
pair : A -> B -> prod A B.
Check prod nat nat.
Print Universes.
Polymorphic Inductive sum (A B:Type) : Type :=
| inl : A -> sum A B
| inr : B -> sum A B.
Print sum.
Check (sum nat nat).
End Easy.
Section Hierarchy.
Definition Type3 := Type.
Definition Type2 := Type : Type3.
Definition Type1 := Type : Type2.
Definition id1 := ((forall A : Type1, A) : Type2).
Definition id2 := ((forall A : Type2, A) : Type3).
Definition id1' := ((forall A : Type1, A) : Type3).
Fail Definition id1impred := ((forall A : Type1, A) : Type1).
End Hierarchy.
Section structures.
Record hypo : Type := mkhypo {
hypo_type : Type;
hypo_proof : hypo_type
}.
Definition typehypo (A : Type) : hypo := {| hypo_proof := A |}.
Polymorphic Record dyn : Type :=
mkdyn {
dyn_type : Type;
dyn_proof : dyn_type
}.
Definition monotypedyn (A : Type) : dyn := {| dyn_proof := A |}.
Polymorphic Definition typedyn (A : Type) : dyn := {| dyn_proof := A |}.
Definition atypedyn : dyn := typedyn Type.
Definition projdyn := dyn_type atypedyn.
Definition nested := {| dyn_type := dyn; dyn_proof := atypedyn |}.
Definition nested2 := {| dyn_type := dyn; dyn_proof := nested |}.
Definition projnested2 := dyn_type nested2.
Polymorphic Definition nest (d : dyn) := {| dyn_proof := d |}.
Polymorphic Definition twoprojs (d : dyn) := dyn_proof d = dyn_proof d.
End structures.
Section cats.
Local Set Universe Polymorphism.
Require Import Utf8.
Definition fibration (A : Type) := A -> Type.
Definition Hom (A : Type) := A -> A -> Type.
Record sigma (A : Type) (P : fibration A) :=
{ proj1 : A; proj2 : P proj1} .
Class Identity {A} (M : Hom A) :=
identity : ∀ x, M x x.
Class Inverse {A} (M : Hom A) :=
inverse : ∀ x y:A, M x y -> M y x.
Class Composition {A} (M : Hom A) :=
composition : ∀ {x y z:A}, M x y -> M y z -> M x z.
Notation "g ° f" := (composition f g) (at level 50).
Class Equivalence T (Eq : Hom T):=
{
Equivalence_Identity :> Identity Eq ;
Equivalence_Inverse :> Inverse Eq ;
Equivalence_Composition :> Composition Eq
}.
Class EquivalenceType (T : Type) : Type :=
{
m2: Hom T;
equiv_struct :> Equivalence T m2 }.
Polymorphic Record cat (T : Type) :=
{ cat_hom : Hom T;
cat_equiv : forall x y, EquivalenceType (cat_hom x y) }.
Definition catType := sigma Type cat.
Notation "[ T ]" := (proj1 T).
Require Import Program.
Program Definition small_cat : cat Empty_set :=
{| cat_hom x y := unit |}.
Next Obligation.
refine ({|m2:=fun x y => True|}).
constructor; red; intros; trivial.
Defined.
Record iso (T U : Set) :=
{ f : T -> U;
g : U -> T }.
Program Definition Set_cat : cat Set :=
{| cat_hom := iso |}.
Next Obligation.
refine ({|m2:=fun x y => True|}).
constructor; red; intros; trivial.
Defined.
Record isoT (T U : Type) :=
{ isoT_f : T -> U;
isoT_g : U -> T }.
Program Definition Type_cat : cat Type :=
{| cat_hom := isoT |}.
Next Obligation.
refine ({|m2:=fun x y => True|}).
constructor; red; intros; trivial.
Defined.
Polymorphic Record cat1 (T : Type) :=
{ cat1_car : Type;
cat1_hom : Hom cat1_car;
cat1_hom_cat : forall x y, cat (cat1_hom x y) }.
End cats.
Polymorphic Definition id {A : Type} (a : A) : A := a.
Definition typeid := (@id Type).
Fail Check (Prop : Set).
Fail Check (Set : Set).
Check (Set : Type).
Check (Prop : Type).
Definition setType := ltac:(let t := type of Set in exact t).
Definition foo (A : Prop) := A.
Fail Check foo Set.
Check fun A => foo A.
Fail Check fun A : Type => foo A.
Check fun A : Prop => foo A.
Fail Definition bar := fun A : Set => foo A.
Fail Check (let A := Type in foo (id A)).
Definition fooS (A : Set) := A.
Check (let A := nat in fooS (id A)).
Fail Check (let A := Set in fooS (id A)).
Fail Check (let A := Prop in fooS (id A)).
(* Some tests of sort-polymorphisme *)
Section S.
Polymorphic Variable A:Type.
(*
Definition f (B:Type) := (A * B)%type.
*)
Polymorphic Inductive I (B:Type) : Type := prod : A->B->I B.
Check I nat.
End S.
(*
Check f nat nat : Set.
*)
Definition foo' := I nat nat.
Print Universes. Print foo. Set Printing Universes. Print foo.
(* Polymorphic axioms: *)
Polymorphic Axiom funext : forall (A B : Type) (f g : A -> B),
(forall x, f x = g x) -> f = g.
(* Check @funext. *)
(* Check funext. *)
Polymorphic Definition fun_ext (A B : Type) :=
forall (f g : A -> B),
(forall x, f x = g x) -> f = g.
Polymorphic Class Funext A B := extensional : fun_ext A B.
Section foo2.
Context `{forall A B, Funext A B}.
Print Universes.
End foo2.
Module eta.
Set Universe Polymorphism.
Set Printing Universes.
Axiom admit : forall A, A.
Record R := {O : Type}.
Definition RL (x : R@{i}) : ltac:(let u := constr:(Type@{i}:Type@{j}) in exact (R@{j}) ) := {|O := @O x|}.
Definition RLRL : forall x : R, RL x = RL (RL x) := fun x => eq_refl.
Definition RLRL' : forall x : R, RL x = RL (RL x).
intros. apply eq_refl.
Qed.
End eta.
Module Hurkens'.
Require Import Hurkens.
Polymorphic Record box (X : Type) (T := Type) : Type := wrap { unwrap : T }.
Definition unwrap' := fun (X : Type) (b : box X) => let (unw) := b in unw.
Fail Definition bad : False := TypeNeqSmallType.paradox (unwrap' Type (wrap _
Type)) eq_refl.
End Hurkens'.
|