blob: c098c6e890f50cf1c3b16d956eab2fe8979d75f8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
Definition p := 0.
Definition m := 0.
Module Test_Import.
Module P.
Definition p := 1.
End P.
Module M.
Import P.
Definition m := p.
End M.
Module N.
Import M.
Lemma th0 : p = 0.
reflexivity.
Qed.
End N.
(* M and P should be closed *)
Lemma th1 : m = 0 /\ p = 0.
split; reflexivity.
Qed.
Import N.
(* M and P should still be closed *)
Lemma th2 : m = 0 /\ p = 0.
split; reflexivity.
Qed.
End Test_Import.
(********************************************************************)
Module Test_Export.
Module P.
Definition p := 1.
End P.
Module M.
Export P.
Definition m := p.
End M.
Module N.
Export M.
Lemma th0 : p = 1.
reflexivity.
Qed.
End N.
(* M and P should be closed *)
Lemma th1 : m = 0 /\ p = 0.
split; reflexivity.
Qed.
Import N.
(* M and P should now be opened *)
Lemma th2 : m = 1 /\ p = 1.
split; reflexivity.
Qed.
End Test_Export.
|