blob: b4a8af46fd83d22e9bdc3691de70c29998f77cd8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
Definition p:=O.
Definition m:=O.
Module Test_Import.
Module P.
Definition p:=(S O).
End P.
Module M.
Import P.
Definition m:=p.
End M.
Module N.
Import M.
Lemma th0 : p=O.
Reflexivity.
Qed.
End N.
(* M and P should be closed *)
Lemma th1 : m=O /\ p=O.
Split; Reflexivity.
Qed.
Import N.
(* M and P should still be closed *)
Lemma th2 : m=O /\ p=O.
Split; Reflexivity.
Qed.
End Test_Import.
(********************************************************************)
Module Test_Export.
Module P.
Definition p:=(S O).
End P.
Module M.
Export P.
Definition m:=p.
End M.
Module N.
Export M.
Lemma th0 : p=(S O).
Reflexivity.
Qed.
End N.
(* M and P should be closed *)
Lemma th1 : m=O /\ p=O.
Split; Reflexivity.
Qed.
Import N.
(* M and P should now be opened *)
Lemma th2 : m=(S O) /\ p=(S O).
Split; Reflexivity.
Qed.
End Test_Export.
|